Genomic warfare to counter malaria drug resistance

February 16, 2010, University of Montreal

Scientists battling malaria have earned a major victory. According to a Nature Genetics study, an international group of researchers has used genomics to decode the blueprint of Plasmodium falciparum - a strain of malaria most resistant to drugs that causes the most deaths around the world. The discovery may lead to advanced pharmaceuticals to fight the disease and prevent drug resistance among the 250 million people infected by malaria each year.

"Combating resistance is nothing short of an arms race," says lead author Dr. Philip Awadalla, a pediatrics professor at the Université de Montréal, a scientist at the Sainte-Justine University Hospital Research Center and scientific director of CARTaGENE. "As the malaria pathogen evolves, researchers must evolve with it to find ways to counter the disease."

The team decoded 200 malaria samples from Asia, Africa, Central America, South America and Papua New Guinea. Their goal was to identify how strains were becoming resistant to the eight anti-malaria drugs currently available.

"There are substantial genetic differences in malaria around the world," stresses Dr. Awadalla, noting African strains differ from Asia strains. "What has occurred is a combination of genetic drift, where genes segregated over space and time from differential environments, immune pressures and exposures to drugs."

As part of their genomic mapping, the research team found that Plasmodium falciparum recombined fastest in Africa. Dr. Awadalla compares malaria genomes to human genomes. In malaria, however, variation among some genetic material is so high and evolves so rapidly that the parasite can develop .

New clues garnered by this study, he says, "will allow pharmaceutical companies to create treatments that target the evolving malaria genome."

More information: The article "Plasmodium falciparum genome-wide scans for positive selection, recombination hot spots and resistance to antimalarial drugs" is published in the journal Nature. … ent/full/ng.528.html

Related Stories

Recommended for you

New methods find undiagnosed genetic diseases in electronic health records

March 15, 2018
Patients diagnosed with heart failure, stroke, infertility and kidney failure could actually be suffering from rare and undiagnosed genetic diseases.

Hundreds of genes linked to intelligence in global study

March 14, 2018
More than 500 genes linked to intelligence have been identified in the largest study of its kind. Scientists compared variation in DNA in more than 240,000 people from around the world, to discover which genes are associated ...

Study finds that genes play a role in empathy

March 12, 2018
A new study published today suggests that how empathic we are is not just a result of our upbringing and experience but also partly a result of our genes.

Large-scale genetic study provides new insight into the causes of stroke

March 12, 2018
An international research consortium studying 520,000 individuals from around the world has identified 22 new genetic risk factors for stroke, thus tripling the number of gene regions known to affect stroke risk. The results ...

Study suggests some CpGs in the genome can be hemimethylated by design

March 9, 2018
A pair of researchers at Emory University has found that some CpGs in the genome can be hemimethylated by design, rather than by chance. In their paper published in the journal Science, Chenhuan Xu and Victor Corces describe ...

Intravenous arginine benefits children after acute metabolic strokes

March 9, 2018
Children with mitochondrial diseases who suffered acute metabolic strokes benefited from rapid intravenous treatment with the amino acid arginine, experiencing no side effects from the treatment. The diseases were caused ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.