Study reveals how genes interact with their environment to cause disease

February 18, 2010

A UCLA study reveals how human genes interact with their environment to boost disease risk. Published in the Feb. 18 online edition of the American Journal of Human Genetics, the findings shed light on why the search for specific gene variants linked to human diseases can only partly explain common disorders.

"We know that and environmental factors influence common human diseases like heart disease, diabetes and cancer," explained principal investigator Jake Lusis, professor of medicine, human genetics and microbiology, immunology and at the David Geffen School of Medicine at UCLA. "Most research, however, has focused on unraveling the genetic component of disease risk while ignoring the effect of environmental stimuli. Our study examined how the molecular interaction between the two helps lead to disease."

"Smoking and high cholesterol, for example, each increase a person's risk for heart disease," he said. "But when you add them together, the total risk exceeds its parts. Their interaction creates a dangerous synergy that causes damage beyond what the two can cause independently."

Unlike earlier studies that focused on a single gene, the UCLA team scrutinized the activity of thousands of human genes both at rest and under stress. In particular, the scientists zeroed in on gene expression—the process by which a gene's DNA sequence is converted into cellular proteins.

Using arteries that surgeons had trimmed from 96 donated hearts prior to organ transplantation, Lusis and his team cultured cells from the inner lining of the blood vessels. To mimic environmental stress, the scientists exposed the cells to fats that incite inflammation and lead to atherosclerosis, or hardening of the arteries. Then they looked at the cells' genes and compared their normal expression patterns to their activity under stress.

"The genes responded differently to inflammation depending on their ," said first author Casey Romanoski, a UCLA graduate student in human genetics. "About 35 percent of the most affected genes were influenced by the interaction between their genetic variants and the fats."

"You can't effectively study genes divorced from their environment," she added. "The missing link lies in the intersection of genes with their environment."

"Our findings demonstrate that these interactions are important in humans and should be considered in genetic research," said Lusis. "Improving our understanding of the molecular architecture of disease may one day provide us with a new tool for how we address common disorders like cancer, diabetes and ."

Related Stories

Recommended for you

Maternal diet may program child for disease risk, but better nutrition later can change that

October 20, 2017
Research has shown that a mother's diet during pregnancy, particularly one that is high-fat, may program her baby for future risk of certain diseases such as diabetes. A new study from nutrition researchers at the University ...

New gene editing approach for alpha-1 antitrypsin deficiency shows promise

October 20, 2017
A new study by scientists at UMass Medical School shows that using a technique called "nuclease-free" gene editing to correct cells with the mutation that causes a rare liver disease leads to repopulation of the diseased ...

Researchers find evidence of DNA damage in veterans with Gulf War illness

October 19, 2017
Researchers say they have found the "first direct biological evidence" of damage in veterans with Gulf War illness to DNA within cellular structures that produce energy in the body.

Researchers drill down into gene behind frontotemporal lobar degeneration

October 19, 2017
Seven years ago, Penn Medicine researchers showed that mutations in the TMEM106B gene significantly increased a person's risk of frontotemporal lobar degeneration (FTLD), the second most common cause of dementia in those ...

New clues to treat Alagille syndrome from zebrafish

October 18, 2017
A new study led by researchers at Sanford Burnham Prebys Medical Discovery Institute (SBP) identifies potential new therapeutic avenues for patients with Alagille syndrome. The discovery, published in Nature Communications, ...

Genetic variants associated with obsessive-compulsive disorder identified

October 18, 2017
(Medical Xpress)—An international team of researchers has found evidence of four genes that can be linked to obsessive-compulsive disorder (OCD). In their paper published in the journal Nature Communications, the group ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.