Learning keeps brain healthy: study

March 2, 2010
Brain
Credit: University of Wisconsin and Michigan State Comparative Mammalian Brain Collections and the National Museum of Health and Medicine

UC Irvine neurobiologists are providing the first visual evidence that learning promotes brain health - and, therefore, that mental stimulation could limit the debilitating effects of aging on memory and the mind.

Using a novel visualization technique they devised to study memory, a research team led by Lulu Chen and Christine Gall found that everyday forms of animate neuron receptors that help keep functioning at optimum levels.

These receptors are activated by a called brain-derived neurotrophic factor, which facilitates the growth and differentiation of the connections, or synapses, responsible for communication among . BDNF is key in the formation of memories.

"The findings confirm a critical relationship between learning and brain growth and point to ways we can amplify that relationship through possible future treatments," says Chen, a graduate researcher in anatomy & neurobiology.

Study results appear in the early online edition of the Proceedings of the National Academy of Sciences for the week of March 1.

In addition to discovering that brain activity sets off BDNF signaling at the sites where neurons develop synapses, researchers determined that this process is linked to learning-related brain rhythms, called theta rhythms, vital to the encoding of new memories.

Theta rhythms occurring in the hippocampus involve numerous neurons firing synchronously at a rate of three to eight times per second. These rhythms have been associated with long-term potentiation, a cellular mechanism underlying learning and memory.

In rodent studies, the team found that both unsupervised learning and artificial application of theta rhythms triggered BDNF signaling at synapse creation sites.

"This relationship has implications for maintaining good brain health," says Gall, a professor of anatomy & neurobiology. "There is evidence that theta rhythms weaken as we age, and our discoveries suggest that this can result in memory impairment. On the other hand, they suggest that staying mentally active as we age can keep neuronal BDNF signaling at a constant rate, which may limit memory and cognitive decline."

Researchers are now exploring whether learning-induced growth signals decrease with age and, if so, whether this can be reversed with a new family of experimental drugs.

Related Stories

Recommended for you

Small but distinct differences among species mark evolution of human brain

November 23, 2017
The most dramatic divergence between humans and other primates can be found in the brain, the primary organ that gives our species its identity.

Team constructs whole-brain map of electrical connections key to forming memories

November 22, 2017
A team of neuroscientists at the University of Pennsylvania has constructed the first whole-brain map of electrical connectivity in the brain based on data from nearly 300 neurosurgical patients with electrodes implanted ...

What if consciousness is not what drives the human mind?

November 22, 2017
Everyone knows what it feels like to have consciousness: it's that self-evident sense of personal awareness, which gives us a feeling of ownership and control over the thoughts, emotions and experiences that we have every ...

To forget or to remember? Memory depends on subtle brain signals, scientists find

November 22, 2017
The fragrance of hot pumpkin pie can bring back pleasant memories of holidays past, while the scent of an antiseptic hospital room may cause a shudder. The power of odors to activate memories both pleasing and aversive exists ...

Pitch imperfect? How the brain decodes pitch may improve cochlear implants

November 22, 2017
Picture yourself with a friend in a crowded restaurant. The din of other diners, the clattering of dishes, the muffled notes of background music, the voice of your friend, not to mention your own – all compete for your ...

New research suggests high-intensity exercise boosts memory

November 22, 2017
The health advantages of high-intensity exercise are widely known but new research from McMaster University points to another major benefit: better memory.

2 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

Alphakronik
not rated yet Mar 03, 2010
Really? Someone had to spend thousands of dollars to prove what has already been proven?

Waste of good science funding.
bottomlesssoul
not rated yet Mar 03, 2010
Nothing is science is proven. Science can only support a given hypothesis or disprove it and supporting evidence is not proof.

Proof is only a phenomena of mathematics.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.