Dangerous custodians: Immune cells as possible nerve-cell killers in Alzheimer's disease

March 22, 2010, Ludwig-Maximilians-Universität München

Progressive dementia of Alzheimer's patients is due to an inexorable loss of nerve cells from the brain. German neuroscientists have now shown that microglia may actually make a significant contribution to the loss of neurons associated with Alzheimer's disease.

Microglia are the cells responsible for immune surveillance in the brain, and they initiate protective inflammatory reactions in response to and infection. An international team under the leadership of LMU neuroscientist Professor Jochen Herms has now shown that these cells may actually make a significant contribution to the loss of associated with Alzheimer's disease.

About 1.2 million people are thought to suffer from this form of progressive dementia in Germany, and this figure is expected to double as the average age of the population continues to increase. Their new findings lead Professor Herms and his team to believe that, as the disease develops, stressed secrete a that attracts microglia. The ensuing inflammatory reactions ultimately result in the elimination of the neurons. This implies that chemical signalling between nerve cells and microglia plays an important role in mediating neuron loss during the course of the disease. "We may be able to make use of these results to develop novel agents that can slow the rate of neuron loss by interrupting communications between the two cell types", says Herms. ( online, 21 March 2010)

It is estimated that as many as 18 million people currently suffer from Alzheimer's disease worldwide, and the numbers are rising. This form of progressive is due to an inexorable loss of nerve cells from the brain that is associated with the formation of insoluble protein aggregates, called beta-amyloid plaques and tangles. Large numbers of microglia gather in the vicinity of these plaques. Microglia serve as immune "policemen" that use their long processes to monitor their surroundings for signs of tissue damage. In accordance with this role, it has been thought that they congregate near plaques in order to degrade them.

Using two-photon microscopy, Professor Herms and his colleagues at the LMU's Center for Neuropathology were able to look directly into the brains of genetically modified mice that develop many of the symptoms characteristic of Alzheimer's disease in humans. The mice had also been engineered to make fluorescent forms of proteins that are specific for neurons and microglia, and the imaging technique enabled the researchers to monitor the fate of identifiable neurons and microglia over periods of weeks and months.

This approach made it possible, for the first time, to visualize the loss of nerve cells in the brains of living mice. Nerve loss was found to be preceded by the activation of microglia. "We assume that the sick nerve cells near plaques secrete a chemical messenger that induces the microglia to home in on them", says Herms. "The best candidate for the messenger responsible is the chemokine fractalikine, which docks onto a receptor protein on the surface of the microglial cells." Indeed, when this receptor was genetically eliminated, nerve cell loss was prevented.

These results demonstrate that microglia are not only involved in the removal of the amyloid aggregates typical of Alzheimer's disease, they also contribute actively to the catastrophic loss of nerve cells. In this picture, the communication channel between nerve cell and microglia that is mediated by the fractalkine receptor plays a crucial role in the pathology of Alzheimer's disease. "The new findings could possibly lead to new therapeutic approaches to preventing neuron loss", says Herms.

More information: "Microglial CX3CR1 knockout prevents neuron loss in an Alzheimer´s disease mouse model", Martin Fuhrmann, Tobias Bittner, Christian K.E. Jung, Steffen Burgold, Richard M. Page, Gerda Mitteregger, Christian Haass, Frank M. LaFerla, Hans Kretzschmar, and Jochen Herms, Nature Neuroscience online, 21 March 2010

Related Stories

Recommended for you

Neurons can carry more than one signal at a time

July 18, 2018
Back in the early days of telecommunications, engineers devised a clever way to send multiple telephone calls through a single wire at the same time. Called time-division multiplexing, this technique rapidly switches between ...

Pregnancy history may be tied to Alzheimer's disease

July 18, 2018
A woman's history of pregnancy may affect her risk of Alzheimer's disease decades later, according to a study published in the July 18, 2018, online issue of Neurology, the medical journal of the American Academy of Neurology. ...

Researchers solve mystery of how ALL enters the central nervous system

July 18, 2018
A deadly feature of acute lymphoblastic leukemia (ALL) is its invasion of the central nervous system.

Forty percent of people have a fictional first memory, says study

July 17, 2018
Researchers have conducted one of the largest surveys of people's first memories, finding that nearly 40 per cent of people had a first memory which is fictional.

Protein found to be key component in irregularly excited brain cells

July 17, 2018
In a new study in mice, researchers have identified a key protein involved in the irregular brain cell activity seen in autism spectrum disorders and epilepsy. The protein, p53, is well-known in cancer biology as a tumor ...

New drug target for remyelination in MS is identified

July 17, 2018
Remyelination, the spontaneous regeneration of the fatty insulator in the brain that keeps neurons communicating, has long been seen as crucial to the next big advance in treating multiple sclerosis (MS). However, a lack ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.