Researchers discover big role for microRNA in lethal lung fibrosis

April 29, 2010, University of Pittsburgh

A small piece of RNA appears to play a big role in the development of idiopathic pulmonary fibrosis (IPF), according to lung disease researchers at the University of Pittsburgh School of Medicine. Their study, which is the first to examine microRNAs in the disease, is available online in the American Journal of Respiratory and Critical Care Medicine.

MicroRNAs are short strands of genetic material that are involved in regulating the expression, or activity, of genes, explained senior author Naftali Kaminski, M.D., associate professor of medicine, and pathology, and director of the Dorothy P. and Richard P. Simmons Center for Interstitial Lung Diseases at the University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center. They are a new family of that are thought to be factors in embryonic development, multiple cancers and chronic .

"Our research now indicates that microRNA changes also contribute to IPF," Dr. Kaminski said. "We have identified an entirely new molecular mechanism for the disease, which gives us new ideas about how to treat it."

The researchers assessed microRNA profiles in samples of healthy lung tissue and samples of tissue affected by IPF, which is a chronic, progressive and usually lethal disease of lung scarring that affects more than 100,000 Americans and leads to 15,000 deaths annually.

"Ten percent of the microRNAs were different between IPF and control lungs," said Kusum Pandit, Ph.D., the study's lead author and a postdoctoral researcher in Dr. Kaminski's lab. "The changes were very impressive."

The researchers particularly noted a diminished amount of a microRNA called let-7d and examined it more closely. They found almost no expression of let-7d in the fibrotic, or scarred, areas of 40 IPF lung samples, whereas it was abundant in 20 healthy samples used for comparison. Further experimentation showed them that let-7d is inhibited by the cytokine TGF-beta, a signaling protein that promotes the development of fibrosis through several biological pathways.

In another experiment, the researchers made an antagonist that inhibits let-7d and administered it to several mice through their windpipes for a few days. When examined soon after, the lungs of the mice looked very much like what is seen in patients with early lung fibrosis.

"These results suggest that by increasing let-7d in the lung, we may be able to slow down or even prevent lung fibrosis," Dr. Kaminski said. "Our next challenge is to develop methods that will allow us to safely do that so we can test its therapeutic value."

Related Stories

Recommended for you

A Trojan Horse delivery for treating a rare, potentially deadly, blood-clotting disorder

September 21, 2018
In proof-of-concept experiments, University of Alabama at Birmingham researchers have highlighted a potential therapy for a rare but potentially deadly blood-clotting disorder, TTP. The researchers deliver this therapeutic ...

Japanese team creates human oogonia using human stem cells in artificial mouse ovaries

September 21, 2018
A team of researchers with members from several institutions in Japan has successfully generated human oogonia inside of artificial mouse ovaries using human stem cells. In their paper published in the journal Science, the ...

A new approach to developing a vaccine against vivax malaria

September 21, 2018
A novel study reports an innovative approach for developing a vaccine against Plasmodium vivax, the most prevalent human malaria parasite outside sub-Saharan Africa. The study led by Hernando A. del Portillo and Carmen Fernandez-Becerra, ...

Researchers explore how changes in diet alter microbiome in artificial intestine

September 21, 2018
Using an artificial intestine they created, researchers have shown that the microbiome can quickly adapt from the bacterial equivalent of a typical western diet to one composed exclusively of dietary fats. That adaptation ...

Study identifies stem cell that gives rise to new bone and cartilage in humans

September 20, 2018
A decade-long effort led by Stanford University School of Medicine scientists has been rewarded with the identification of the human skeletal stem cell.

Scientists grow human esophagus in lab

September 20, 2018
Scientists working to bioengineer the entire human gastrointestinal system in a laboratory now report using pluripotent stem cells to grow human esophageal organoids.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.