Hormone sensitivity of breast stem cells presents drug target

April 11, 2010, Walter and Eliza Hall Institute
Breast stem cells retain a 'memory' of prior female hormone deprivation. These images show mammary (breast) outgrowths (blue branches) derived from stem cells. Stem cells from female mice whose ovaries had been removed produced fewer and smaller outgrowths (left panel) than control mice (right panel). Credit: Marie-Liesse Asselin-Labat, Walter and Eliza Hall Institute

Researchers at the Walter and Eliza Hall Institute have discovered that breast stem cells are exquisitely sensitive to the female hormones oestrogen and progesterone, a finding that opens the way for the development of new preventions and treatments for breast cancer.

The discovery, by scientists in the institute's and Cancer and Bioinformatics divisions, also explains decades of evidence linking breast cancer risk to exposure to female hormones.

It has been published online today in the international journal Nature.

Dr Jane Visvader, who led the research with Dr Geoff Lindeman, said sustained exposure to oestrogen and progesterone was a well-established risk factor for breast cancer. "There is a clear evidence that the more menstrual cycles a woman has the greater her breast cancer risk," Dr Visvader said. "There is even an increase in breast cancer risk in the short-term following pregnancy. However the cellular basis for these observations has been poorly understood."

In the mid-2000s, Drs Visvader and Lindeman discovered breast stem cells in both mice and humans. Unexpectedly, however, they also found that breast stem cells lacked 'receptors' that would allow them to be directly controlled by the female hormones oestrogen and progesterone.

Now, work by Drs Visvader and Lindeman in collaboration with Drs Marie-Liesse Asselin-Labat, Gordon Smyth and others at the institute, has revealed that despite lacking receptors for oestrogen and progesterone, breast stem cells are still remarkably sensitive to female hormones.

Using mouse models, they showed that when the ovaries were removed or the animals were treated with hormone inhibitors (which are in clinical use as anti-breast cancer agents), breast stem cell numbers dropped and the cells appeared to become dormant.

Dr Lindeman, who is also a medical oncologist at the Royal Melbourne Hospital, said this finding helped to explain why the effects of 'chemoprevention' - a treatment aimed at breast cancer prevention continued long after anti-estrogen tablets have been stopped.

"Our research also revealed that during pregnancy there is a profound increase in breast stem cell numbers," Dr Lindeman said.

"This might account for the short-term increase in cancer risk associated with pregnancy."

Further studies, in collaboration with Dr Jack Martin at St Vincent's Institute Melbourne and Dr Hisataka Yasuda at the Nagahama Institute for Biochemical Science, identified the RANK ligand pathway as the key cell-signalling pathway responsible for the indirect control of breast stem cells in pregnancy.

Dr Lindeman said inhibitors of RANK signalling have been developed and are currently in clinical trials to help maintain bone strength and treat breast cancer that has spread to the bones. "Our discovery suggests that inhibitors of RANK or other stem cell pathways represent possible therapeutic strategies that could also be investigated as prevention agents," Dr Lindeman said.

Related Stories

Recommended for you

Scientists emulate the human blood-retinal barrier on a microfluidic chip

January 24, 2018
For some years, scientists have been seeking ways to reduce animal testing and accelerate clinical trials. In vitro assays with living cells are an alternative, but have limitations, as the interconnection and interaction ...

Forces from fluid in the developing lung play an essential role in organ development

January 23, 2018
It is a marvel of nature: during gestation, multiple tissue types cooperate in building the elegantly functional structures of organs, from the brain's folds to the heart's multiple chambers. A recent study by Princeton researchers ...

Anemia discovery offers new targets to treat fatigue in millions

January 22, 2018
A new discovery from the University of Virginia School of Medicine has revealed an unknown clockwork mechanism within the body that controls the creation of oxygen-carrying red blood cells. The finding sheds light on iron-restricted ...

More surprises about blood development—and a possible lead for making lymphocytes

January 22, 2018
Hematopoietic stem cells (HSCs) have long been regarded as the granddaddy of all blood cells. After we are born, these multipotent cells give rise to all our cell lineages: lymphoid, myeloid and erythroid cells. Hematologists ...

How metal scaffolds enhance the bone healing process

January 22, 2018
A new study shows how mechanically optimized constructs known as titanium-mesh scaffolds can optimize bone regeneration. The induction of bone regeneration is of importance when treating large bone defects. As demonstrated ...

Researchers illustrate how muscle growth inhibitor is activated, could aid in treating ALS

January 19, 2018
Researchers at the University of Cincinnati (UC) College of Medicine are part of an international team that has identified how the inactive or latent form of GDF8, a signaling protein also known as myostatin responsible for ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.