Magnetic attraction of stem cells creates more potent treatment for heart attack

April 8, 2010

Researchers at the Cedars-Sinai Heart Institute have found in animals that infusing cardiac-derived stem cells with micro-size particles of iron and then using a magnet to guide those stem cells to the area of the heart damaged in a heart attack boosts the heart's retention of those cells and could increase the therapeutic benefit of stem cell therapy for heart disease.

The study is published today online by Circulation Research, a scientific journal of the American Heart Association. The study also will appear in the journal's May 28th printed edition.

"Stem cell therapies show great promise as a treatment for heart injuries, but 24 hours after infusion, we found that less than 10 percent of the remain in the injured area," said Eduardo Marbán, M.D., director of the Cedars-Sinai Heart Institute. "Once injected into a patient's artery, many stem cells are lost due to the combination of tissue blood flow, which can wash out stem cells, and cardiac contraction, which can squeeze out stem cells. We needed to find a way to guide more of the cells directly to the area of the heart that we want to heal."

Marbán's team, including Ke Cheng, Ph.D. and other researchers, then began a new animal investigation, loading cardiac stem cells with micro-size iron particles. The iron-loaded cells were then injected into rats with a heart attack. When a toy magnet was placed externally above the heart and close to the damaged heart muscle, the stem cells clustered at the site of injury, retention of cells in the heart tripled, and the injected cells went on to heal the heart more effectively.

"Tissue viability is enhanced and heart function is greater with magnetic targeting," said Marbán, who holds the Mark Siegel Family Foundation Chair at the Cedars-Sinai Heart Institute and directs Cedars-Sinai's Board of Governors Heart Stem Cell Center. "This remarkably simple method could easily be coupled with current stem cell treatments to enhance their effectiveness."

In the future, this finding in the animal model may build on the ongoing, groundbreaking clinical trial led by Raj Makkar, M.D., director of interventional cardiology for the Cedars-Sinai Heart Institute. In the clinical trial, which is based on Marbán's research, heart attack patients undergo two minimally-invasive procedures in an effort to repair and re-grow healthy muscle in a heart injured by a . First, a biopsy of each patient's own heart tissue is used to grow specialized heart stem cells. About a month later, the multiplied stem cells are then injected back into the patient's heart via a coronary artery.

The two-step procedure was completed on the first patient in June 2009. Complete results are expected in early-2011.

Recently, Marbán received a $5.5 million grant from the California Institute for Regenerative Medicine to continue developing cardiac stem cell therapies.

The Cedars-Sinai Heart Institute is internationally recognized for outstanding heart care built on decades of innovation and leading-edge research. From cardiac imaging and advanced diagnostics to surgical repair of complex heart problems to the training of the heart specialists of tomorrow and research that is deepening medical knowledge and practice, the Cedars-Sinai Heart Institute is known around the world for excellence and innovations.

Marbán invented the methods used to grow and expand stem cells from heart biopsies. Marbán filed patents regarding those innovations which are licensed by Capricor, Inc. Marbán and his wife, Linda Marban, Ph.D. are both founders of Capricor, Inc. Dr. Eduardo Marban serves on its Board of Directors, and owns equity in the company. Dr. Linda Marban serves as a consultant to Capricor.

More information: To read the complete study, visit www.circres.ahajournals.org

Related Stories

Recommended for you

Researchers describe mechanism that underlies age-associated bone loss

September 22, 2017
A major health problem in older people is age-associated osteoporosis—the thinning of bone and the loss of bone density that increases the risk of fractures. Often this is accompanied by an increase in fat cells in the ...

Researchers develop treatment to reduce rate of cleft palate relapse complication

September 22, 2017
Young people with cleft palate may one day face fewer painful surgeries and spend less time undergoing uncomfortable orthodontic treatments thanks to a new therapy developed by researchers from the UCLA School of Dentistry. ...

Exosomes are the missing link to insulin resistance in diabetes

September 21, 2017
Chronic tissue inflammation resulting from obesity is an underlying cause of insulin resistance and type 2 diabetes. But the mechanism by which this occurs has remained cloaked, until now.

Thousands of new microbial communities identified in human body

September 20, 2017
A new study of the human microbiome—the trillions of microbial organisms that live on and within our bodies—has analyzed thousands of new measurements of microbial communities from the gut, skin, mouth, and vaginal microbiome, ...

Study finds immune system is critical to regeneration

September 20, 2017
The answer to regenerative medicine's most compelling question—why some organisms can regenerate major body parts such as hearts and limbs while others, such as humans, cannot—may lie with the body's innate immune system, ...

Immune cells produce wound healing factor, could lead to new IBD treatment

September 20, 2017
Specific immune cells have the ability to produce a healing factor that can promote wound repair in the intestine, a finding that could lead to new, potential therapeutic treatments for inflammatory bowel disease (IBD), according ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

gmurphy
not rated yet Apr 09, 2010
I may be mistaken, but it appears that the article does not state how these iron particles are removed from the body?, surely this is important?

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.