Major breakthrough offers hope of preventing mitochondrial diseases

April 14, 2010, Newcastle University

( -- Scientists at Newcastle University have developed a pioneering technique which enables them for the first time to successfully transfer DNA between two human eggs. The technique has the potential to help prevent the transmission of serious inherited disorders known as mitochondrial diseases.

The study, led by Dr Mary Herbert and Professor Doug Turnbull, and funded primarily by the Muscular Dystrophy Campaign, the Medical Research Council and the Wellcome Trust, is published today in the journal Nature.

Every cell in our body needs energy to function. This energy is provided by mitochondria, often referred to as the cells' 'batteries'. Mitochondria are found in every cell, along with the , which contains the genes that determine our individual characteristics. The information required to create these 'batteries' - the mitochondrial DNA - is passed down the maternal line, from mother to child.

A mother's egg contains a copy of her own DNA - twenty-three - as well as DNA for her mitochondria. The amount of genetic material contained in mitochondrial DNA is very small - 13 protein-producing genes, compared to an estimated 23,000 genes that we inherit from our parents - and this information is used solely to generate the energy produced by the 'batteries'.

Like all DNA, the DNA in mitochondria can mutate and mothers can pass these mutations onto their children. Around one in 200 children are born each year with mutations which in most cases cause only mild or asymptomatic forms of mitochondrial disease. However, around one in 6,500 children are born with severe mitochondrial diseases, which include muscular weakness, blindness, fatal , , learning disability and diabetes and can lead to death in early infancy.

There are no treatments available to cure these conditions and mothers face the agonising choice of whether to risk having a child who may be affected by such a disease or not to have children at all.

Now, researchers at Newcastle University have developed a technique which allows them to replace these 'batteries'. This is the first time such a technique has been used in fertilised human eggs.

A fertilised egg usually contains two pronuclei - from the egg and sperm - as well as mitochondria. The technique developed by the Newcastle team involves extracting the pronuclei but leaving behind the mitochondria. The researchers then take a fertilised egg from a donor, remove its pronuclei and replace them with the extracted pronuclei. This new fertilised egg contains the DNA of the father and mother, and the mitochondria from the donor.

"What we've done is like changing the battery on a laptop. The energy supply now works properly, but none of the information on the hard drive has been changed," explains Professor Turnbull. "A child born using this method would have correctly functioning mitochondria, but in every other respect would get all their genetic information from their father and mother."

The Newcastle team used their technique to create a total of eighty zygotes (fertilised eggs). These were cultured for six to eight days in the laboratory to monitor development as far as the blastocyst stage (the stage at which it has divided into a group of around one hundred cells) in line with the terms of the licence granted by the Human Fertility and Embryology Authority (HFEA) in 2005.

In some cases, a very small amount of the mother's was carried over to the new egg. Since severe diseases only occurs with large amounts of mutations, this would be very unlikely to affect a child's health.

The research is a proof of principle that researchers should be able to prevent transmission of mitochondrial diseases, thereby allowing the mother to give birth to a healthy child.

"This is a very exciting development with immense potential to help families at risk from ," says Professor Turnbull. "We have no way of curing these diseases at the moment, but this technique could allow us to prevent the diseases occurring in the first place. It is important that we do all we can to help these families and give them the chance to have healthy children, something most of us take for granted."

The Newcastle team used eggs which were unsuitable for IVF; for example, eggs with one or three pronuclei, rather than the normal two. This is common in the IVF process and affects around one in ten fertilised eggs. The eggs were donated by couples attending the Newcastle Fertility Centre at Life. The egg donation programme and the ethical and regulatory aspects of the project are led by Professor Alison Murdoch.

The team is now planning further studies that will provide further evidence of the safety of this procedure. The Human Fertility and Embryology (HFE) Act as amended in 2009, currently prevents fertility treatment using these techniques. However, the HFE Act includes the provision for the Secretary of State to make provisions for this to be permitted in the future.

Related Stories

Recommended for you

Breakthrough article on mechanistic features of microRNA targeting and activity

March 23, 2018
Giovanna Brancati and Helge Grosshans from the FMI have described target specialization of miRNAs of the let-7 family. They identified target site features that determine specificity, and revealed that specificity can be ...

Calorie restriction trial in humans suggests benefits for age-related disease

March 22, 2018
One of the first studies to explore the effects of calorie restriction on humans showed that cutting caloric intake by 15% for 2 years slowed aging and metabolism and protected against age-related disease. The study, which ...

Boosting enzyme may help improve blood flow, fitness in elderly

March 22, 2018
As people age, their blood-vessel density and blood flow decrease, which is why it's harder to maintain muscle mass after 40 and endurance in the later decades, even with exercise. This vascular decline is also one of the ...

Scientists pinpoint cause of vascular aging in mice

March 22, 2018
We are as old as our arteries, the adage goes, so could reversing the aging of blood vessels hold the key to restoring youthful vitality?

Sulfur amino acid restriction diet triggers new blood vessel formation in mice

March 22, 2018
Putting mice on a diet containing low amounts of the essential amino acid methionine triggered the formation of new blood vessels in skeletal muscle, according to a new study from Harvard T.H. Chan School of Public Health. ...

Cold can activate body's 'good' fat at a cellular level, study finds

March 21, 2018
Lower temperatures can activate the body's 'good' fat formation at a cellular level, a new study led by academics at The University of Nottingham has found.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.