Sleep apnea may increase insulin resistance

May 17, 2010, American Thoracic Society

Sleep apnea may cause metabolic changes that increase insulin resistance, according to researchers from the University of Pittsburgh Medical Center. The intermittent hypoxia associated with sleep apnea causes a distinct drop in insulin sensitivity in mice, even though chronic hypoxia, such as that associated with high altitude, did not.

The research will be reported at the ATS 2010 International Conference in New Orleans.

To determine whether intermittent hypoxia (IH) and chronic hypoxia (CH) would have different metabolic effects, Dr. Lee and colleagues fitted adult male mice with arterial and venous catheters for continuous rapid blood monitoring of glucose and insulin sensitivity. They then exposed the mice to either seven hours of IH, in which treatment, oxygen levels oscillated, reaching a low of about 5 percent once a minute, or CH, in which they were exposed to oxygen at a constant rate of 10 percent, and compared each treatment group to protocol-matched controls.

When compared to the control group, the IH mice demonstrated impaired and reduced insulin sensitivity; the CH group, however, showed only a reduction in glucose tolerance but not insulin sensitivity compared to controls. "Both intermittent hypoxia and continuous hypoxia exposed mice exhibited impaired glucose tolerance, but only the intermittent hypoxia exposed animals demonstrated a reduction in insulin sensitivity," said Euhan John Lee, M.D., a fellow at the Medical Center.

"The intermittent hypoxia of sleep apnea and the continuous hypoxia of altitude are conditions of hypoxic stress that are known to modulate glucose and insulin homeostasis. Although both forms of hypoxia worsen glucose tolerance, this research demonstrated that the increase in that accompanies intermittent hypoxia, or sleep apnea, is greater than that seen with continuous hypoxia, or altitude," explained Dr. Lee.

The specific finding that intermittent, but not continuous, hypoxia induced insulin resistance was not expected.

Increased generation of reactive oxygen species, initiation of pro-inflammatory pathways, elevated sympathetic activity, or upregulation of insulin counter-regulatory hormones in IH may contribute to the greater development of insulin resistance in those mice versus those exposed to continuous hypoxia.

"As sleep apnea continues to rise with the rate of obesity, it will be increasingly important to understand both the independent and interactive effects of both morbidities on the development of metabolic disorders. This research demonstrated that intermittent hypoxic exposure can cause changes in insulin sensitivity and insulin secretion, which may have important consequences in metabolically vulnerable diabetic patients who present with co-morbid ," said Dr. Lee. "Future research will explore potential inflammatory and lipotoxic pathways by which intermittent hypoxia disrupts glucose and insulin homeostasis."

Related Stories

Recommended for you

Synthetic cannabinoid reduces sleep apnea

November 29, 2017
A synthetic version of a molecule found in the cannabis plant was safe and effective in treating obstructive sleep apnea in the first large, multi-site study of a drug for the sleep disorder funded by the National Institutes ...

Sleeping through the snoring: Researchers identify neurons that rouse the brain to breathe

November 2, 2017
A common and potentially serious sleep disorder, obstructive sleep apnea affects at least one quarter of U.S. adults and is linked to increased risk of diabetes, obesity and cardiovascular disease. In a paper published today ...

Remede system approved for sleep apnea

October 9, 2017
(HealthDay)—The Remede sleep system, an implanted device that treats central sleep apnea by activating a nerve that sends signals to the diaphragm to stimulate breathing, has been approved by the U.S. Food and Drug Administration.

Inflammation may precede sleep apnea, could be treatment target

September 1, 2017
Inflammation is traditionally thought of as a symptom of sleep apnea, but it might actually precede the disorder, potentially opening the door for new ways to treat and predict sleep apnea, according to researchers.

More evidence: Untreated sleep apnea shown to raise metabolic and cardiovascular stress

August 31, 2017
Sleep apnea, left untreated for even a few days, can increase blood sugar and fat levels, stress hormones and blood pressure, according to a new study of sleeping subjects. A report of the study's findings, published in the ...

Sleep patterns contribute to racial differences in disease risk

August 18, 2017
Poor sleep patterns could explain, in part, the differences in the risk of cardiometabolic disease between African-Americans and European-Americans, according to a new study published in Proceedings of the National Academy ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.