New cochlear implant could improve outcomes for patients

June 30, 2010
More electrodes and a thinner, more flexible wire inserted further into the inner ear could improve conventional cochlear implants, a team of Medical College of Georgia and Georgia Institute of Technology researchers say. Credit: Phil Jones, Campus Photographer for the Medical College of Georgia

More electrodes and a thinner, more flexible wire inserted further into the inner ear could improve conventional cochlear implants, a team of Medical College of Georgia and Georgia Institute of Technology researchers say.

Candidates for —an estimated million in the United States alone—include children and adults with profound deafness in both ears. An implant does not restore normal hearing but simulates sounds in the environment, including speech. More electrodes pick up more external sound and the flexible wire allows those sounds to be transmitted over more of the auditory nerves.

Researchers will present their findings about the new device at the 11th International Conference on Cochlear Implants and Other Auditory Implantable Technology in Stockholm, Sweden June 30 - July 3.

The snail-shaped is difficult to access, particularly considering the multiple components involved in a cochlear implant, said Dr. Brian McKinnon, assistant professor of neurotology/otology in the Department of Otolaryngology in the MCG School of Medicine. Those components include of an external microphone, speech processor and transmitter and an internal group of electrodes arranged on a thin wire that stimulate the .

"The wire in traditional implants is fragile and thin and may buckle," he said. "We try to get it as far into the center of the cochlea, where the nerves are bundled, as possible - the idea being that the more electrodes on the nerves, the better the sound."

Because they buckle, physicians typically can't optimally insert the wire, and electrodes can, in some cases, injure the cochlea, he said.

The new device, called the thin film array, pairs 12 electrodes on a thinner, more flexible wire. The wire's thinness has, so far, allowed surgeons to place more electrodes into the cochlea than they could with a conventional electrode. With more electrodes than standard models, the implant improves the quality of sound.

The array was developed in the Biosystems Interface Laboratory at the Georgia Institute of Technology by Assistant Professor Pamela Bhatti, a biomedical engineer, and Georgia Tech student Jessica Falcone. McKinnon and Dr. Kenneth Iverson, a third-year otolaryngology resident, tested it on cadaver models

"This device could mean could mean a several-fold improvement of the sound's resolution," Iverson said. "For the patient, it would be like the difference between hearing a Bach concerto played by a music box versus a quartet."

McKinnon compared the improvement to adding more fingers and more notes to a piano performance.

There are other benefits too.

"Because the thinner wire means less trauma to the ear, it could also mean more preservation of residual hearing for patients," Iverson said.

Related Stories

Recommended for you

Engineered protein treatment found to reduce obesity in mice, rats and primates

October 19, 2017
(Medical Xpress)—A team of researchers with pharmaceutical company Amgen Inc. report that an engineered version of a protein naturally found in the body caused test mice, rats and cynomolgus monkeys to lose weight. In their ...

New procedure enables cultivation of human brain sections in the petri dish

October 19, 2017
Researchers at the University of Tübingen have become the first to keep human brain tissue alive outside the body for several weeks. The researchers, headed by Dr. Niklas Schwarz, Dr. Henner Koch and Dr. Thomas Wuttke at ...

Cancer drug found to offer promising results in treating sepsis in test mice

October 19, 2017
(Medical Xpress)—A combined team of researchers from China and the U.S. has found that a drug commonly used to treat lung cancer in humans offers a degree of protection against sepsis in test mice. In their paper published ...

Study reveals key molecular link in major cell growth pathway

October 19, 2017
A team of scientists led by Whitehead Institute has uncovered a surprising molecular link that connects how cells regulate growth with how they sense and make available the nutrients required for growth. Their work, which ...

Tracing cell death pathway points to drug targets for brain damage, kidney injury, asthma

October 19, 2017
University of Pittsburgh scientists are unlocking the complexities of a recently discovered cell death process that plays a key role in health and disease, and new findings link their discovery to asthma, kidney injury and ...

Inflammation trains the skin to heal faster

October 18, 2017
Scars may fade, but the skin remembers. New research from The Rockefeller University reveals that wounds or other harmful, inflammation-provoking experiences impart long-lasting memories to stem cells residing in the skin, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.