The right response to every pathogen

June 7, 2010, Helmholtz Association of German Research Centres

In the event of an infection, the immune system releases messenger substances. These molecules can either activate immune cells to defeat invading pathogens, or inhibit them to prevent an excessive immune reaction. For this, the immune system has to decide very quickly what mixture of activating and inhibiting messenger molecules leads to a successful defence.

Researchers from the Helmholtz-Centre for Research in Braunschweig, Germany, have now been able to show that hitherto underrated immune cells, so-called , decide at a very early stage of an infection which way the defence has to go. They only produce the crucial messenger substance beta-interferon during a viral infection, not during a . The reason for this: While on the one hand the molecule always helps to defeat viruses, it hinders on the other hand important immune cells to kill bacteria - and thus impairs the defence. The group's results have now been published in the scientific magazine PNAS.

Mast cells play a central role during , a function researchers have concentrated on until now. They reside directly under the skin and mucosae, and react immediately when an allergenic substance enters the body. As a result, reddened mucosae, swelling, runny eyes and a runny nose occur. However, mast cells also seem to have a crucial, but only superficially understood, function during pathogenic defence. "They wait precisesly at that position where pathogens enter the body," says Nelson O. Gekara, researcher in the group "Molecular Immunology" at the HZI, "and thus belong to the very first line of immune defence."

To investigate how mast cells react when they come in contact with bacteria and viruses, the HZI-researchers incubated mast cells and together in a petri dish. Then, they measured what messenger substances the cells produced. As soon as a occurred, the scientists were then able to detect beta-interferon, produced by the mast cells. Conversely, during a bacterial infection, no beta-interferon was found. "Until now it has been unknown that mast cells can virtually decide whether they produce beta-interferon or not," says Nicole Dietrich who did research on the mast cells. "During a viral infection, beta-interferon helps because it activates mechanisms in surrounding cells that support the virus defence."

The researchers found the reason for why mast cells do not produce beta-interferon during bacterial infections in the defence line that follows mast cells: "Beta-interferon inhibits precisely those cells that quickly eliminate invading ," says Nicole Dietrich. Thus, mast cells determine very early which direction the immune defence is taking.

Important for this decision making are receptors on the surface of all immune cells: So-called "Toll-like receptors" activate mast cells as soon as a pathogen enters the body. When the receptors are triggered, mast cells produce a number of messenger substances that attract cells or keep them at distance, activate or inhibit them and thus regulate an optimised immune response.

"To produce beta-interferon, have to absorb the receptors and transport them into the cell interior. During a bacterial infection, mast cells refuse to incorporate the receptor and thus do not produce beta-interferon", says Nelson O. Gekara. This is another step towards understanding the complex network of messenger substances, immune cell and pathogen defence. "It seems as if every line of defence can precisely decide which step will be the next and best."

More information: Dietrich Nicole; Rohde Manfred; Geffers Robert; Kröger Andrea; Hauser Hansjörg; Weiss Siegfried; Gekara Nelson O. Mast cells elicit proinflammatory but not type I interferon responses upon activation of TLRs by bacteria. Proceedings of the National Academy of Sciences of the United States of America 2010;107(19):8748-53

Related Stories

Recommended for you

Researchers devise decoy molecule to block pain where it starts

January 16, 2018
For anyone who has accidentally injured themselves, Dr. Zachary Campbell not only sympathizes, he's developing new ways to blunt pain.

Scientists unleash power of genetic data to identify disease risk

January 16, 2018
Massive banks of genetic information are being harnessed to shed new light on modifiable health risks that underlie common diseases.

Blood-vessel-on-a-chip provides insight into new anti-inflammatory drug candidate

January 15, 2018
One of the most important and fraught processes in the human body is inflammation. Inflammatory responses to injury or disease are crucial for recruiting the immune system to help the body heal, but inflammation can also ...

Molecule produced by fat cells reduces obesity and diabetes in mice

January 15, 2018
UC San Francisco researchers have discovered a new biological pathway in fat cells that could explain why some people with obesity are at high risk for metabolic diseases such as type 2 diabetes. The new findings—demonstrated ...

Obese fat becomes inflamed and scarred, which may make weight loss harder

January 12, 2018
The fat of obese people becomes distressed, scarred and inflamed, which can make weight loss more difficult, research at the University of Exeter has found.

Optimized human peptide found to be an effective antibacterial agent

January 11, 2018
A team of researchers in the Netherlands has developed an effective antibacterial ointment based on an optimized human peptide. In their paper published in the journal Science Translational Medicine, the group describes developing ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.