Good Vibrations: Treating brain disease with some good vibes (w/ Video)

July 13, 2010

Columbia University bioengineer Elisa Konofagou is making waves when it comes to researching treatments for degenerative brain disorders such as Alzheimer's and Parkinson's. These aren't just any waves; they're ultrasound waves.

"Ultrasound denotes acoustic wave propagation. If you increase the intensity and pressure of these waves, you can cause on tissues," says Konofagou.

With support from the National Science Foundation (NSF), Konofagou is experimenting with ultrasound technology and how it could become part of a comprehensive treatment for various degenerative brain diseases.

She's looking into using the technology as a non-invasive way to unlock one of the brain's top defense mechanisms in mammals--the blood-brain barrier that protects the brain from poisonous molecules. "The blood-brain barrier is a specialized structure that lines the capillaries of the brain, and it offers additional defense to the brain," explains Konofagou.

The video will load shortly.

However, this natural protection against toxins also has a downside. Even medicines have a tough time crossing the barrier. Konofagou believes that ultrasound technology could change that. "There are 7000 pharmacological agents developed and 95 percent cannot penetrate the blood-brain barrier unless the barrier is manipulated," she says.

At her lab in Columbia-Presbyterian Hospital, Konofagou is able to open the blood-brain barrier and have it close back in mice on a regular basis.

Konofagou places a mouse a few inches under a transducer roughly the shape of an upside down teacup. It emits ultrasound waves. At the same time, she injects the mouse with a liquid solution full of microscopic bubbles. She then directs the ultrasound beam toward the brain in an area that would hit the center region of the brain on the order of less than a centimeter in diameter. "We affect a specific localized region in the brain because most brain diseases, at least at their early stages, are very localized," she explains.

Once inside the bloodstream, the injected microscopic bubbles circulate together with the needed medication. The bubbles hit the area on which the ultrasound beam is focused, and they "are set into vibration," says Konofagou.

These vibrating micro-bubbles loosen the tightly joined cells that make up the blood-brain barrier, allowing the drug to pass through. The medications can then reach their target--the neurons near the capillaries of the brain. Konofagou says that the barrier closes up within the first 24 hours and the procedure has no harmful effect on the mice when applied at low pressures.

Konofagou envisions the day when this treatment might be routinely available to humans. "The way we envision the course of treatment in humans would be similar to chemotherapy," she says. Patients would get an intravenous (IV) infusion of the liquid solution that contains the micro-bubbles in addition to medication. The individuals would then sit under a device that might resemble a hair dryer in a hair salon, but instead of emitting air, the device would emit .

"One of the main hurdles is to demonstrate that it's safe, that there's no collateral damage when we open the blood-brain barrier, and that this is a reversible phenomenon," explains Konofagou. "The other issue is to make sure we can actually penetrate the skull in humans the same way we can in smaller animals."

Ultrasound treatment for diseases like Parkinson's and Alzheimer's in humans may be years off, but so far, the vibe coming from this lab is right on.

Related Stories

Recommended for you

Long-lasting blood vessel repair in animals via stem cells

October 23, 2017
Stem cell researchers at Emory University School of Medicine have made an advance toward having a long-lasting "repair caulk" for blood vessels. The research could form the basis of a treatment for peripheral artery disease, ...

Synthetic hydrogels deliver cells to repair intestinal injuries

October 23, 2017
By combining engineered polymeric materials known as hydrogels with complex intestinal tissue known as organoids - made from human pluripotent stem cells - researchers have taken an important step toward creating a new technology ...

Study reveals connection between microbiome and autoimmune disorders

October 23, 2017
Many people associate the word "bacteria" with something dirty and disgusting. Dr. Pere Santamaria disagrees. Called the microbiome, the bacteria in our bodies have all kinds of positive effects on our health, Santamaria ...

Engineered protein treatment found to reduce obesity in mice, rats and primates

October 19, 2017
(Medical Xpress)—A team of researchers with pharmaceutical company Amgen Inc. report that an engineered version of a protein naturally found in the body caused test mice, rats and cynomolgus monkeys to lose weight. In their ...

New procedure enables cultivation of human brain sections in the petri dish

October 19, 2017
Researchers at the University of Tübingen have become the first to keep human brain tissue alive outside the body for several weeks. The researchers, headed by Dr. Niklas Schwarz, Dr. Henner Koch and Dr. Thomas Wuttke at ...

Cancer drug found to offer promising results in treating sepsis in test mice

October 19, 2017
(Medical Xpress)—A combined team of researchers from China and the U.S. has found that a drug commonly used to treat lung cancer in humans offers a degree of protection against sepsis in test mice. In their paper published ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.