Researcher pinpoints the cellular mechanism responsible for modulating the permeability of blood vessels

August 12, 2010, Institut de recherches cliniques de Montreal

Dr. Jean-Philippe Gratton, Director of the Endothelial cell biology research unit at the Institut de recherches cliniques de Montréal (IRCM), identifies a new intracellular mechanism responsible for modulating vascular permeability: the nitrosylation of beta-catenin protein by nitric oxide. This scientific breakthrough could have a possible impact on the treatment of cancerous tumours by altering the permeability of the blood vessels irrigating them. Dr. Gratton's team will publish the results of its research tomorrow in the scientific journal Molecular Cell.

The permeability of blood vessels is determined, in part, by the space between endothelial cells, or the cells lining the inside of all blood vessels. Increasing permeability is an essential step in angiogenesis, the process of formation of new blood vessels. Vascular endothelial growth factor (VEGF) is responsible for triggering angiogenesis, and increasing vascular permeability through the activation of the eNOS enzyme, which in turn produces nitric oxide (NO), an intracellular gas.

"We already knew that NO plays a very important role in the modulation of vascular permeability and that it could represent a target for blocking the growth of tumours," explains Dr. Gratton. "However, we ignored how it worked. We have now shown that beta-catenin is the specific protein targeted by nitrosylation - the chemical modification of proteins in endothelial cells by NO."

Nitrosylation of beta-catenin allows endothelial cells to detach from one another, thus increasing vascular permeability. This process could eventually help regenerate damaged arteries after a heart attack. On the contrary, reducing endothelial permeability in cancerous tumours could help prevent the creation of new blood vessels on which they feed, and consequently block their growth. A better understanding of NO's functions could therefore have an important impact on numerous fields of research, as this molecule is involved in many physiological and pathological processes.

"The identification of new cell mechanisms responsible for altering the permeability of is a an important step in cancer research," says Dr. Morag Park, Scientific Director of the Canadian Institutes of Health Research's Institute of Cancer Research, "this discovery can potentially have a significant impact on how we treat certain types of tumour growth."

Related Stories

Recommended for you

Researchers discover novel mechanism linking changes in mitochondria to cancer cell death

February 20, 2018
To stop the spread of cancer, cancer cells must die. Unfortunately, many types of cancer cells seem to use innate mechanisms that block cancer cell death, therefore allowing the cancer to metastasize. While seeking to further ...

Stem cell vaccine immunizes lab mice against multiple cancers

February 15, 2018
Stanford University researchers report that injecting mice with inactivated induced pluripotent stem cells (iPSCs) launched a strong immune response against breast, lung, and skin cancers. The vaccine also prevented relapses ...

Induced pluripotent stem cells could serve as cancer vaccine, researchers say

February 15, 2018
Induced pluripotent stem cells, or iPS cells, are a keystone of regenerative medicine. Outside the body, they can be coaxed to become many different types of cells and tissues that can help repair damage due to trauma or ...

Team paves the way to the use of immunotherapy to treat aggressive colon tumors

February 15, 2018
In a short space of time, immunotherapy against cancer cells has become a powerful approach to treat cancers such as melanoma and lung cancer. However, to date, most colon tumours appeared to be unresponsive to this kind ...

Can our genes help predict how women respond to ovarian cancer treatment?

February 15, 2018
Research has identified gene variants that play a significant role in how women with ovarian cancer process chemotherapy.

First comparison of common breast cancer tests finds varied accuracy of predictions

February 15, 2018
Commercially-available prognostic breast cancer tests show significant variation in their abilities to predict disease recurrence, according to a study led by Queen Mary University of London of nearly 800 postmenopausal women.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.