Researchers uncover novel genetic pathway responsible for triggering vascular growth

April 4, 2010, University of Massachusetts Medical School

Most solid cancers can't grow beyond a limited size without an adequate blood supply and supporting vascular network. Because of this, cancer researchers have sought to understand how a tumor's vascular network develops—and, more importantly, how to prevent it from developing: If the vascular network never develops, the theory goes, the tumor cannot grow.

Researchers at the University of Massachusetts Medical School have discovered a critical step for in zebrafish embryos, providing new insight into how vascular systems develop and offering a potential for preventing . UMMS Associate Professor of and the Program in Gene Function and Expression Nathan Lawson, PhD, and colleagues have identified a novel microRNA-mediated genetic pathway responsible for new blood vessel growth, or angiogenesis, in zebrafish embryos. Published online by Nature, Dr. Lawson's work provides new insights into how vascular systems use the forces of existing blood flow to initiate the growth of new vessels.

Focusing on the development of the fifth and sixth aortic arches in the zebrafish, Dr. Lawson describes how the forces exerted by blood flow on are a critical component for expressing a microRNA that triggers new vessel development. In the early stages of development, when blood flow is present in the aortic vessels, but the vascular linkages between the two arches have yet to be established, the stimulus provided by active blood flow leads to expression of an endothelial-cell specific microRNA (mir-126). In turn, this microRNA turns on (VEGF), a chemical signal produced by surrounding cells that normally stimulates angiogenesis. Thus, blood flow allows the endothelial cells to respond to VEGF by growing into new blood vessels. However, when blood flow in the aortic arches was restricted, mir-126 failed to be expressed. In the absence of this microRNA, new blood vessels were unable to develop due to a block in VEGF signaling.

"We have known for over a hundred years that blood flow makes new vessels grow," said Dr. Lawson. "But we never really knew how cells in a growing vessel interpreted this signal. Our results show that miR-126 is the crucial switch that allows flow to turn on VEGF signaling and drive blood vessel growth. Since VEGF is crucial for tumor progression, not to mention a number of other vascular diseases, our findings may provide new ways to modify this pathway in these settings."

In his research, Dr. Lawson identifies the microRNA as a key facilitator in the integration of the physiological stimulus of blood flow with the activation of VEGF signaling, which guides , in endothelial cells. As a result, regulation of the microRNA, mir-126, could be a potential therapeutic target in limiting blood vessel development in solid cancers.

Related Stories

Recommended for you

Study looks at how newly discovered gene helps grow blood vessels

February 19, 2018
A new study published today found that a newly discovered gene helps grow blood vessels when it senses inadequate blood flow to tissues.

Scientists produce human intestinal lining that re-creates living tissue inside organ-chip

February 16, 2018
Investigators have demonstrated how cells of a human intestinal lining created outside an individual's body mirror living tissue when placed inside microengineered Intestine-Chips, opening the door to personalized testing ...

Data wave hits health care

February 16, 2018
Technology used by Facebook, Google and Amazon to turn spoken language into text, recognize faces and target advertising could help doctors fight one of the deadliest infections in American hospitals.

Researcher explains how statistics, neuroscience improve anesthesiology

February 16, 2018
It's intuitive that anesthesia operates in the brain, but the standard protocol among anesthesiologists when monitoring and dosing patients during surgery is to rely on indirect signs of arousal like movement, and changes ...

Team reports progress in pursuit of sickle cell cure

February 16, 2018
Scientists have successfully used gene editing to repair 20 to 40 percent of stem and progenitor cells taken from the peripheral blood of patients with sickle cell disease, according to Rice University bioengineer Gang Bao.

Appetite-controlling molecule could prevent 'rebound' weight gain after dieting

February 15, 2018
Scientists have revealed how mice control their appetite when under stress such as cold temperatures and starvation, according to a new study by Monash University and St Vincent's Institute in Melbourne. The results shed ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.