SSRIs may pack more punch at the cellular level than believed

August 16, 2010, Genetics Society of America

A new discovery about selective serotonin reuptake inhibitors (SSRIs) suggests that these drugs, which are used to treat mental health disorders like depression and anxiety, have multiple effects on our cells. In a research report published in the August 2010 issue of GENETICS, researchers used yeast cells to identify secondary drug targets or pathways affected by SSRIs. Such secondary pathways could help explain why different people taking the same drug may experience different effects, and could also lead to new types of drugs altogether.

"We hope that our study begins to illuminate the full breadth of pharmacological effects of antidepressants on cellular physiology starting with the simple unicellular eukaryote, budding yeast," said Ethan O. Perlstein, Ph.D, a researcher involved in the work from the Lewis-Sigler Institute for Integrative Genomics at Princeton University in New Jersey. "Furthermore, our work validates the notion that simple model organisms may be useful for the study of complex human disease."

Knowing that a high concentration of sertraline (Zoloft®) is toxic to , scientists applied a lethal dose to millions of these cells and fished out a few cells that became resistant to the drug. Researchers then identified the underlying mutations in those cells and applied genetic, biochemical, and electron microscopic imaging techniques to characterize the molecular basis of resistance. Their results suggest that SSRIs may actually affect more than one process in a cell, including non-protein targets such as phospholipid membranes. Additionally, the study's results demonstrate that sertraline targets intracellular membranes and modulate pathways involved in vesicle trafficking that are present in both yeast and human . Vesicle trafficking plays an important role in how neural synapses develop and function. More work is necessary, however, to determine the exact clinical relevance of this secondary .

"There's no question that SSRIs help thousands of people with mental health problems," said Mark Johnston, Editor-in-Chief of the journal GENETICS, "but as this research shows, there is still some mystery about how they help us. This study a key first-step toward giving us a comprehensive answer to how SSRI's work, and it may open doors to entirely new therapies."

More information: www.genetics.org

Related Stories

Recommended for you

Epigenetics study helps focus search for autism risk factors

January 16, 2018
Scientists have long tried to pin down the causes of autism spectrum disorder. Recent studies have expanded the search for genetic links from identifying genes toward epigenetics, the study of factors that control gene expression ...

Study advances gene therapy for glaucoma

January 16, 2018
While testing genes to treat glaucoma by reducing pressure inside the eye, University of Wisconsin-Madison scientists stumbled onto a problem: They had trouble getting efficient gene delivery to the cells that act like drains ...

Group recreates DNA of man who died in 1827 despite having no body to work with

January 16, 2018
An international team of researchers led by a group with deCODE Genetics, a biopharmaceutical company in Iceland, has partly recreated the DNA of a man who died in 1827, despite having no body to take tissue samples from. ...

The surprising role of gene architecture in cell fate decisions

January 16, 2018
Scientists read the code of life—the genome—as a sequence of letters, but now researchers have also started exploring its three-dimensional organisation. In a paper published in Nature Genetics, an interdisciplinary research ...

How incurable mitochondrial diseases strike previously unaffected families

January 15, 2018
Researchers have shown for the first time how children can inherit a severe - potentially fatal - mitochondrial disease from a healthy mother. The study, led by researchers from the MRC Mitochondrial Biology Unit at the University ...

Genes that aid spinal cord healing in lamprey also present in humans

January 15, 2018
Many of the genes involved in natural repair of the injured spinal cord of the lamprey are also active in the repair of the peripheral nervous system in mammals, according to a study by a collaborative group of scientists ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.