Dual-capture CTC chip efficiently captures breast cancer cells

September 29, 2010

Researchers have identified a novel, dual-platform technology, the On-Q-ity Circulating Cancer Capture and Characterization Chip (C5), which they believe is more efficient than the commonly used single-platform device in identifying circulating tumor cells (CTCs) in breast cancer.

Analyzing CTCs in blood can identify and cancer cell mutations to provide physicians with methods for improved , prognosis and treatment.

In order to efficiently capture CTCs, two capture mechanisms were used to trap CTCs by antibody affinity and size. Gary Palmer, M.D., chief medical officer of On-Q-ity, Inc., Waltham, Mass., and colleagues assessed whether capturing CTCs by using both technologies at the same time was more beneficial and captured a greater number of CTCs than either technology alone.

These laboratory results were presented at the Fourth AACR International Conference on Molecular Diagnostics in Cancer Therapeutic Development, held here.

"It made sense that using both capture methods would be more efficient than either alone. Some CTCs are smaller and often avoid size capture," Palmer said. "Other CTCs have less antigen expression and can also avoid antibody affinity capture. Our dual capture platform provides a better system to ensure that fewer CTCs will be lost."

Using a human breast cancer cell model, the researchers found the On-Q-ity C5 captured a greater number of CTCs; 65 percent of the cells were captured compared to 45 percent of captured cells with the size-based method and 16 percent with antibody affinity.

"Capturing a greater number of CTCs using both mechanisms will hopefully provide better information to help health care providers offer an easier, faster and more accurate diagnosis, treatment prediction and prognosis to their patients," Palmer said.

On-Q-ity researchers are currently conducting additional studies to confirm the usefulness of capturing these CTCs in the clinic, and are learning how to make the processing more sensitive and easier to use. They are also evaluating this platform's use in late-stage and colon, prostate and lung cancers.

Related Stories

Recommended for you

Cancer hijacks natural cell process to survive

June 26, 2017

Cancer tumours manipulate a natural cell process to promote their survival suggesting that controlling this mechanism could stop progress of the disease, according to new research led by the University of Oxford.

Targeted drug shows promise in rare advanced kidney cancer

June 23, 2017

Some patients with a form of advanced kidney cancer that carries a poor prognosis benefited from an experimental drug targeted to an abnormal genetic pathway causing cancerous growth, according to research led by a Dana-Farber ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.