Imaging study provides new view of multiple sclerosis

September 23, 2010
Researchers in Germany have gained new insight into how the immune system causes damage associated with multiple sclerosis, an incurable neuroinflammatory disorder. Using imaging tools which enable investigation of processes in living organisms, they were able to show a direct interaction between immune cells and neurons which plays a significant role in neuronal injury. However, this direct interaction may respond to therapeutic intervention. The study by Dr. Volker Siffrin and Professor Dr. Frauke Zipp has now been published in the journal Immunity. Credit: Dr. Volker Siffrin/Copyright: MDC

Scientists have uncovered an alternative source for some of the damage associated with multiple sclerosis (MS), an incurable neuroinflammatory disorder. The research, published online by Cell Press on September 23rd in the journal Immunity, reveals a direct interaction between immune cells and neurons that plays a significant role in neuronal injury and may respond to therapeutic intervention.

MS is an autoimmune disease in which a person's own immune system attacks their . Symptoms of MS are variable depending on which nerves are affected, but often include muscle weakness, numbness and visual disturbances. Research has shown that MS is caused by damage to the protective , an insulating substance that surrounds nerve processes and is critical for transmission of nerve impulses.

Research has also indicated that direct damage to neurons is prominent in early disease stages. "The contribution of direct neuronal damage to MS pathology has been debated since the first description of the disease," explains senior study author, Professor Frauke Zipp, from Johannes Gutenberg University Mainz in Germany. "Although many different theories about possible underlying mechanisms have been proposed, such as neuron damage being a secondary effect of the disrupted myelin sheath, actual events leading to neural damage are not well understood."

Dr. Zipp and colleagues studied the role of immune cells in neuronal damage in mice with experimental autoimmune encephalomyelitis (EAE, an of MS) by monitoring the development of neuroinflammatory lesions with sophisticated imaging techniques. They observed direct synapse-like interactions between immune cells and neurons. called Th17 cells, which have been linked to autoimmune inflammation, induced localized toxic changes in neuronal calcium levels. This is significant because fluctuations in neuronal intracellular calcium levels that were linked with cell injury were partially reversible when cells were exposed to compounds used to treat excitotoxicity.

These results highlight a specific interaction between the immune system and the nervous system, implicating direct neuronal damage in autoimmune-mediated inflammation. "Our use of live-imaging during disease has led to the characterization of neuronal dysfunction as early and potentially reversible, and suggests that immune-mediated disturbances of the neurons themselves contribute to multiple sclerosis, in addition to interruptions in nerve cell transmission as a result of changes to the myelin sheath," concludes Professor Zipp. "Furthermore, immune-mediated reversible calcium increases in neurons are a viable target for future therapeutics."

Related Stories

Recommended for you

'Human chronobiome' study informs timing of drug delivery, precision medicine approaches

December 13, 2017
Symptoms and efficacy of medications—and indeed, many aspects of the human body itself—vary by time of day. Physicians tell patients to take their statins at bedtime because the related liver enzymes are more active during ...

Study confirms link between the number of older brothers and increased odds of being homosexual

December 12, 2017
Groundbreaking research led by a team from Brock University has further confirmed that sexual orientation for men is likely determined in the womb.

Potassium is critical to circadian rhythms in human red blood cells

December 12, 2017
An innovative new study from the University of Surrey and Cambridge's MRC Laboratory of Molecular Biology, published in the prestigious journal Nature Communications, has uncovered the secrets of the circadian rhythms in ...

Estrogen discovery could shed new light on fertility problems

December 12, 2017
Estrogen produced in the brain is necessary for ovulation in monkeys, according to researchers at the University of Wisconsin-Madison who have upended the traditional understanding of the hormonal cascade that leads to release ...

Time of day affects severity of autoimmune disease

December 12, 2017
Insights into how the body clock and time of day influence immune responses are revealed today in a study published in leading international journal Nature Communications. Understanding the effect of the interplay between ...

3-D printed microfibers could provide structure for artificially grown body parts

December 12, 2017
Much as a frame provides structural support for a house and the chassis provides strength and shape for a car, a team of Penn State engineers believe they have a way to create the structural framework for growing living tissue ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.