New research reveals possible method for boosting the immune system to protect infants against HIV

October 3, 2010, Oregon Health & Science University

- Researchers at Oregon Health &Science University may have uncovered a new weapon for combating HIV as it is passed from mother to newborn child. The research, which was led by researchers at OHSU's Oregon National Primate Research Center, will be published in the October 3rd online edition of the journal Nature Medicine.

"Mother-to-infant transmission of is a tremendous worldwide problem, especially in several African nations," said Nancy Haigwood, Ph.D., researcher and director of the Oregon National Primate Research Center at OHSU.

According to the latest data from the World Health Organization, 33.4 million people were infected by the virus in 2008. About 67 percent of the world's infections are in African countries. In addition, 91 percent of the world's childhood infections are in Africa.

Haigwood, her colleagues at OHSU, along with researchers at the University of Washington are investigating strategies for preventing or countering HIV infections in babies born to women with HIV. Their strategy: to educate part of the baby's within the first few hours of birth to better fight of the disease.

"HIV attacks and kills T-cells, the white blood cells that play an important role in the immune system because they have the ability to identify and destroy disease invaders. By attacking the body's natural defenses, the disease progresses, causes AIDS and eventually death," explained Haigwood. "Therefore, many therapies focus on protecting T-cells."

However, Haigwood and her colleagues took a different approach. They focused on another component of the immune system, which was initially thought to play a lesser role in the body's defense against HIV. Babies born to HIV-infected mothers have HIV-specific neutralizing at the time of birth that are "passively" acquired across the placenta. They wanted to determine whether boosted neutralizing antibody levels would weaken the disease's ability to overtake the body's defenses.

To investigate this possible treatment, the researchers studied three small groups of infant monkeys. The first group was given additional antibodies derived from healthy mothers. The second group was given antibodies matched to simian/human immunodeficiency virus (SHIV). SHIV is a hybrid virus used in research to ensure that results translate between species. The third group of animals was provided with HIV antibodies similar to, but not exactly matching, the strain of infection they would receive. The three groups were then exposed to SHIV and their immune systems were subsequently monitored.

Unlike the other two groups, the "HIV-matched" animals were better protected from the virus. They developed higher levels of neutralizing antibodies and, had lower levels of SHIV in their blood plasma than the comparison groups six months post-infection. In addition they maintained their CD4+ T cells - another component of the immune system.

The study also provided insights into the level of antibodies needed to impact disease progression. For this study, the antibody levels were relatively low dosed. Previously, antibodies were shown to block infection in animal models. This study demonstrated, for the first time, that very low levels of antibodies -- too low to block infection -- can influence disease progression in this setting and stimulate an immune response that contributes to viral control in the absence of drug treatment.

In future studies, the researchers hope to learn whether higher doses of antibodies translate into greater protection for the infants.

"This research demonstrates that boosting the body's HIV antibodies -- by a time-honored method of passive transfer that would use new HIV-specific human monoclonal antibodies -- may be a strategy for reducing infection levels and protecting CD4+ T cells in newborn children," said Haigwood. "While the treatment would not likely prevent infection, it could limit the levels of infection in children which would greatly reduce suffering and extend lives."

Related Stories

Recommended for you

HIV exports viral protein in cellular packages

February 15, 2018
HIV may be able to affect cells it can't directly infect by packaging a key protein within the host's cellular mail and sending it out into the body, according to a new study out of a University of North Carolina Lineberger ...

Can gene therapy be harnessed to fight the AIDS virus?

February 13, 2018
For more than a decade, the strongest AIDS drugs could not fully control Matt Chappell's HIV infection. Now his body controls it by itself, and researchers are trying to perfect the gene editing that made this possible.

Big data methods applied to the fitness landscape of the HIV envelope protein

February 7, 2018
Despite significant advances in medicine, there is still no effective vaccine for the human immunodeficiency virus (HIV), although recent hope has emerged through the discovery of antibodies capable of neutralizing diverse ...

Scientists report big improvements in HIV vaccine production

February 5, 2018
Research on HIV over the past decade has led to many promising ideas for vaccines to prevent infection by the AIDS virus, but very few candidate vaccines have been tested in clinical trials. One reason for this is the technical ...

Microbiome research refines HIV risk for women

January 25, 2018
Drawing from data collected for years by AIDS researchers in six African nations, scientists have pinpointed seven bacterial species whose presence in high concentrations may significantly increase the risk of HIV infection ...

Researchers find latent HIV reservoirs inherently resistant to elimination by CD8+ T-cells

January 22, 2018
The latest "kick-and-kill" research to eliminate the HIV virus uncovered a potential obstacle in finding a cure. A recent study by researchers at the George Washington University (GW) found that latent HIV reservoirs show ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.