Researchers create autistic neuron model

November 11, 2010
This is Alysson R. Muotri, Ph.D., of the University of California, San Diego. Credit: UC San Diego

Using induced pluripotent stem cells from patients with Rett syndrome, scientists at the University of California, San Diego School of Medicine have created functional neurons that provide the first human cellular model for studying the development of autism spectrum disorder (ASD) and could be used as a tool for drug screening, diagnosis and personalized treatment.

The research, led by Alysson R. Muotri, PhD, assistant professor of pediatrics, will be published in the November 12 issue of the journal Cell.

"This work is important because it puts us in a translational mode," said Muotri. "It helps expand and deepen our understanding of autism, from behavioral disorder to developmental brain disorder. We can now look for and test drugs and therapies and see what happens at a cellular and molecular level. That's something we've never been able to do with human autistic before."

Rett (RTT) syndrome is a in which affected display normal development until six months to 1½ years of age, "after which behavioral symptoms begin to emerge," Muotri said. "Progressively, motor functions become impaired. There may be hypotonia or low muscle tone, seizures, diminished social skills and other autistic behaviors."

RTT was the focus of the research because its genetic underpinnings are well-understood. The condition is caused by mutations to the X-linked gene encoding a protein called MeCP2. By knocking out or adding the relevant gene in animal models, researchers can create the damaging effects of RTT or rescue impaired cells.

The new research goes further. Muotri and colleagues at the Salk Institute for Biological Studies and Pennsylvania State University developed a culture system using induced (iPSCs) derived from RTT patient's skin fibroblasts – cells that typically give rise to connective tissues. Instead, the human RTT-iPSCs were reprogrammed to generate functional neurons that, compared to normal control cells, featured fewer synapses, reduced spine density, smaller soma size, altered calcium signaling and electrophysiological defects – all indications that the deleterious alterations to human RTT neurons begin early in development.

The scientists also exposed human RTT-iPSCs to insulin growth factor 1 or IGF1. In a mouse model with RTT syndrome, IGF1 has been shown to improve symptoms, suggesting the protein might have similar potential for treating RTT and other neurological disorders in people. Muotri said IGF1 appeared to rescue some RTT-iPSCs, reverting some neuronal defects, though exactly how IGF1 works remains unknown and requires further investigation.

"This suggests, however, that synaptic deficiencies in Rett syndrome, and likely other , may not be permanent," Muotri said.

Muotri said creation of a human RTT cell culture provides a new and unexplored developmental window before disease onset and possibly a common model for future studies of ASDs.

Autism spectrum disorder (ASD) is a range of complex, varying neurodevelopment disorders characterized by social impairments, communication difficulties and restricted, repetitive and stereotyped patterns of behavior. It is not known what causes ASD. Scientists have identified a number of genes associated with the disorder, but environmental factors likely play a role too.

Autistic disorder (sometimes called autism or classical ASD) is the most severe form. Milder conditions include Asperger syndrome, Rett syndrome, Childhood Disintegrative Disorder and Pervasive Developmental Disorder Not Otherwise Specified (usually referred to as PDD-NOS).

The Centers for Disease Control and Prevention reports the prevalence of autism to be approximately 1 in every 110 births in the United States. An estimated 1.5 million Americans live with the effects of ASD, which occurs in all ethnic and socioeconomic groups and affects every age group, though males are four times more likely to have ASD than females.

Related Stories

Recommended for you

Scientists find key to regenerating blood vessels

November 23, 2017
A new study led by researchers at Sanford Burnham Prebys Medical Discovery Institute (SBP) identifies a signaling pathway that is essential for angiogenesis, the growth of new blood vessels from pre-existing vessels. The ...

Researchers find infectious prions in Creutzfeldt-Jakob disease patient skin

November 22, 2017
Creutzfeldt-Jakob disease (CJD)—the human equivalent of mad cow disease—is caused by rogue, misfolded protein aggregates termed prions, which are infectious and cause fatal damages in the patient's brain. CJD patients ...

Surprising roles for muscle in tissue regeneration, study finds

November 22, 2017
A team of researchers at Whitehead has illuminated an important role for different subtypes of muscle cells in orchestrating the process of tissue regeneration. In a paper published in the November 22 issue of Nature, they ...

Study reveals new mechanisms of cell death in neurodegenerative disorders

November 22, 2017
Researchers at King's College London have discovered new mechanisms of cell death, which may be involved in debilitating neurodegenerative disorders, such as Alzheimer's disease and Parkinson's disease.

Cinnamon turns up the heat on fat cells

November 21, 2017
New research from the University of Michigan Life Sciences Institute has determined how a common holiday spice—cinnamon—might be enlisted in the fight against obesity.

How rogue immune cells cross the blood-brain barrier to cause multiple sclerosis

November 21, 2017
Drug designers working on therapeutics against multiple sclerosis should focus on blocking two distinct ways rogue immune cells attack healthy neurons, according to a new study in the journal Cell Reports.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.