Research uncovers extensive natural recovery after spinal cord injury

November 14, 2010
This graphic shows improvement by 6 months post-injury in forelimb movements and muscle activity during walking. Credit: UC San Diego

A study led by researchers in the Department of Neurosciences at the University of California, San Diego School of Medicine shows unexpected and extensive natural recovery after spinal cord injury in primates. The findings, to be published November 14 in the advance online edition of Nature Neuroscience, may one day lead to the development of new treatments for patients with spinal cord injuries.

While regeneration after severe brain and injury is limited, milder injuries are often followed by good . To investigate how this occurs, UC San Diego and VA Medical Center San Diego researchers studied adult rhesus monkeys. The team was surprised to see that connections between circuits in the spinal cord re-grew spontaneously and extensively, restoring fully 60% of the connections 24 weeks after a mild spinal cord injury.

"The number of connections in spinal cord circuits drops by 80 percent immediately after the injury," said Ephron Rosenzweig, PhD, assistant project scientist in UCSD Department of Neurosciences. "But new growth sprouting from spared axons – the long fibers extending from the brain cells, or neurons, which carry signals to other neurons in the central – restored more than half of the original number of connections." He added that this was particularly surprising since the phenomenon does not appear in rodents – the traditional study model.

The research was led by Rosenzweig and Gregoire Courtine of the University of Zurich in Switzerland. Senior study director was Mark H. Tuszynski, MD, PhD, professor of neurosciences and director of the Center for Neural Repair at UC San Diego, and neurologist at the Veterans Affairs San Diego Health System.

It was not previously known that an injured spinal cord could naturally restore such a high proportion of connections. More profoundly, the spontaneous recovery was accompanied by extensive recovery of movement on the affected side of the body. Tuszynski said the team is now investigating how the nervous system is able to generate so much natural growth after injury. This knowledge could lead to development of drugs or genes that could transmit high-growth signals to spinal cord damage sites after more severe spinal cord injury.

The work highlights an important role for primate models in translating basic scientific research into practical, therapeutic treatments for people. The spinal cords of humans and other primates are different from rodents, both in overall anatomy and in specific functions. For example, the corticospinal tract – a collection of nerve cell fibers linking the cerebral cortex of the brain and the spinal cord – is much more important for muscle movement in primates than in rats.

"With similar injuries, rodents show much less regrowth and recovery of limb function," said Rosenzweig. The challenge now is to determine what exactly is prompting neuronal axons to sprout new connections, leading to recovered movement. That has exciting clinical relevance, Rosenzweig said, because discoveries resulting from further research could be applied to patients with severe injury to their central nervous system.

Related Stories

Recommended for you

'Residual echo' of ancient humans in scans may hold clues to mental disorders

July 26, 2017
Researchers at the National Institute of Mental Health (NIMH) have produced the first direct evidence that parts of our brains implicated in mental disorders may be shaped by a "residual echo" from our ancient past. The more ...

Cellular roots of anxiety identified

July 26, 2017
From students stressing over exams to workers facing possible layoffs, worrying about the future is a normal and universal experience. But when people's anticipation of bad things to come starts interfering with daily life, ...

Laser used to reawaken lost memories in mice with Alzheimer's disease

July 26, 2017
(Medical Xpress)—A team of researchers at Columbia University has found that applying a laser to the part of a mouse brain used for memory storage caused the mice to recall memories lost due to a mouse version of Alzheimer's ...

Cognitive cross-training enhances learning, study finds

July 25, 2017
Just as athletes cross-train to improve physical skills, those wanting to enhance cognitive skills can benefit from multiple ways of exercising the brain, according to a comprehensive new study from University of Illinois ...

Brain disease seen in most football players in large report

July 25, 2017
Research on 202 former football players found evidence of a brain disease linked to repeated head blows in nearly all of them, from athletes in the National Football League, college and even high school.

Zebrafish study reveals clues to healing spinal cord injuries

July 25, 2017
Fresh insights into how zebrafish repair their nerve connections could hold clues to new therapies for people with spinal cord injuries.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.