Study pinpoints part of brain that suppresses instinct

December 22, 2010

Research from York University is revealing which regions in the brain "fire up" when we suppress an automatic behaviour such as the urge to look at other people as we enter an elevator.

A York study, published recently in the journal Frontiers in Human Neuroscience, used fMRI () to track brain activity when study participants looked at an image of a facial expression with a word superimposed on it. Study participants processed the words faster than the . However, when the word did not match the image – for example, when the word "sad" was superimposed on an image of someone smiling − participants reacted less quickly to a request to read the word.

"The emotion in the word doesn't match the emotion in the facial expression, which creates a conflict," said Joseph DeSouza, assistant professor of psychology in York's Faculty of Health. "Our study showed − for the first time − an increase in signal from the left inferior frontal cortex when the study participant was confronted by this conflict between the word and the image and asked to respond to directions that went against their automatic instincts."

Previous research on the prefrontal cortex has found this region to be implicated in higher order cognitive functions including longterm planning, response suppression and response selection. This experiment, conducted by graduate student Shima Ovaysikia under DeSouza's supervision, allowed researchers to study inhibitory mechanisms for much more complex stimuli than have been studied in the past.

The inferior frontal cortex is located near the front left temple. People who have problems with inhibition, including stroke or schizophrenia patients, may have damage to this inferior zone, says DeSouza. As a result, when they see something that is inconsistent – such as the image of a smiling face with the word "sad" across it – they would be expected to take more time to react, because the part of their brains needed to process it has been damaged or destroyed.

Related Stories

Recommended for you

How pheromones trigger female sexual behavior

June 22, 2017

A study by a group of Japanese scientists showed how a male pheromone in mice enhances sexual behaviors in females—and how it may enhance a different behavior, aggression, in males—by identifying distinct neural circuits ...

Coupling of movement and vision

June 22, 2017

In a study published in Cell, Georg Keller and his group shed light on neural circuits in the cortex that underlie the integration of movement and visual feedback. They identified a mechanism in the visual cortex responsible ...

Serotonin improves sociability in mouse model of autism

June 21, 2017

Scientists at the RIKEN Brain Science Institute (BSI) in Japan have linked early serotonin deficiency to several symptoms that occur in autism spectrum disorder (ASD). Published in Science Advances, the study examined serotonin ...

The brain mechanism behind multitasking

June 21, 2017

Although "multitasking" is a popular buzzword, research shows that only 2% of the population actually multitasks efficiently. Most of us just shift back and forth between different tasks, a process that requires our brains ...

Forgetting can make you smarter

June 21, 2017

For most people having a good memory means being able to remember more information clearly for long periods of time. For neuroscientists too, the inability to remember was long believed to represent a failure of the brain's ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.