Study identifies neural structure for self-other distinction in motor domain

January 24, 2011, RIKEN

(PhysOrg.com) -- A new study on social cognition has clarified a key role for the medial frontal region of the cerebral cortex in differentiating between the actions of oneself and the actions of others.

A new study on conducted by Masaki Isoda at the Okinawa Institute of Science and Technology Promotion Corporation (OIST) and the Japan Science and Technology Agency, in collaboration with Kyoko Yoshida and Nobuhito Saito at the University of Tokyo Graduate School of Medicine and Atsushi Iriki at the RIKEN Brain Science Institute, has clarified a key role for the medial frontal region of the in differentiating between the actions of oneself and the actions of others. Published in , this study opens up new avenues for research into the neuronal basis of social cognition in health and disease.

Controversy surrounds the way in which actions of other individuals are represented in the brain. The prevailing theory is that the so-called ‘mirror ’ play a pivotal role in the shared representation of self-action and other’s action. Specifically, mirror neurons fire both when a subject performs a particular motor action and when the subject observes the same action performed by another. These neurons are hypothesized to bridge the gap between the physical self and others, thereby facilitating our understanding of the actions and intentions of others. However, if the actions of another closely overlap our own actions in our brains, how can we know that it is someone else who is acting when we observe an action? Obviously, the brain needs a separate mechanism (or mechanisms) that enables one to distinguish other’s actions from one’s own.

To address this issue, the researchers developed an interactive decision task for a pair of monkeys. They found that the monkeys were capable of utilizing other’s action information to guide their own actions. During the animals’ performance of the task, the researchers monitored the activity of individual neurons in the medial frontal cortex (MFC). To their surprise, many neurons in this brain region were selectively activated by the partner’s action. Such partner-selective neurons were more prevalent in the superficial part of the MFC than in the deeper part of the MFC. This finding indicates that the MFC, particularly its superficial part, encodes other’s actions at the level of single neurons.

This new research provides important insights into the neuronal basis of self-other distinction as well as other domains of social cognitive functions such as social learning. Future work will build on the current findings toward a better understanding of a range of mental disorders in which the assignment of social agency breaks down.

More information: Representation of others’ action by neurons in monkey medial frontal cortex, by Kyoko Yoshida et al. www.cell.com/current-biology/a … 0960-9822(11)00027-3

Related Stories

Recommended for you

New neurons in the adult brain are involved in sensory learning

February 23, 2018
Although we have known for several years that the adult brain can produce new neurons, many questions about the properties conferred by these adult-born neurons were left unanswered. What advantages could they offer that ...

Do you see what I see? Researchers harness brain waves to reconstruct images of what we perceive

February 22, 2018
A new technique developed by neuroscientists at the University of Toronto Scarborough can, for the first time, reconstruct images of what people perceive based on their brain activity gathered by EEG.

Neuroscientists discover a brain signal that indicates whether speech has been understood

February 22, 2018
Neuroscientists from Trinity College Dublin and the University of Rochester have identified a specific brain signal associated with the conversion of speech into understanding. The signal is present when the listener has ...

Superagers' youthful brains offer clues to keeping sharp

February 22, 2018
It's pretty extraordinary for people in their 80s and 90s to keep the same sharp memory as someone several decades younger, and now scientists are peeking into the brains of these "superagers" to uncover their secret.

Study in mice suggests personalized stem cell treatment may offer relief for multiple sclerosis

February 22, 2018
Scientists have shown in mice that skin cells re-programmed into brain stem cells, transplanted into the central nervous system, help reduce inflammation and may be able to help repair damage caused by multiple sclerosis ...

Nolan film 'Memento' reveals how the brain remembers and interprets events from clues

February 22, 2018
Key repeating moments in the film give viewers the information they need to understand the storyline. The scenes cause identical reactions in the viewer's brain. The results deepen our understanding of how the brain functions, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.