New technique to see neurons of the deep brain for months at a time developed

January 16, 2011
This is a diagram of the experimental setup. (left) Tiny optical instruments called microendoscopes are inserted into glass imaging guide tubes, which maintain a precise position in the brain. This allows researchers to view the exact same neuron with a microscope (right) again and again, a new technique for brain researchers. Scientists can also compare diseased tissue, such as a tumor, to healthy tissue in the same animal. Credit: Modified image courtesy Mark Schnitzer and Nature Medicine.

Travel just one millimeter inside the brain and you'll be stepping into the dark.

Standard light microscopes don't allow researchers to look into the interior of the living brain, where memories are formed and diseases such as and cancer can take their toll.

But Stanford scientists have devised a new method that not only lets them peer deep inside the brain to examine its neurons but also allows them to continue monitoring for months.

The technique promises to improve understanding of both the normal biology and diseased states of this hidden tissue.

Other recent advances in micro-optics had enabled scientists to take a peek at cells of the deep brain, but their observations captured only a momentary snapshot of the microscopic changes that occur over months and years with aging and illness.

The Stanford development appears online Jan. 16 in the journal Nature Medicine. It also will appear in the February 2011 print edition.

The video will load shortly.
Stanford researchers have developed a new technique that allows them to monitor the tiny branches of neurons in a live brain for months at a time. Neuroscientists will now be able to monitor the microscopic changes that occur over the course of progressive brain disease. Credit: Jack Hubbard, Stanford University News Service

Scientists study many diseases of the deep brain using mouse models, mice that have been bred or genetically engineered to have diseases similar to human afflictions.

"Researchers will now be able to study mouse models in these deep areas in a way that wasn't available before," said senior author Mark Schnitzer, associate professor of biology and of applied physics.

Because can only penetrate the outermost layer of tissues, any region of the brain deeper than 700 microns or so (about 1/32 of an inch) cannot be reached by traditional microscopy techniques. Recent advances in micro-optics had allowed scientists to briefly peer deeper into living tissues, but it was nearly impossible to return to the same location of the brain and it was very likely that the tissue of interest would become damaged or infected.

With the new method, "Imaging is possible over a very long time without damaging the region of interest," said Juergen Jung, operations manager of the Schnitzer lab. Tiny glass tubes, about half the width of a grain of rice, are carefully placed in the deep brain of an anaesthetized mouse. Once the tubes are in place, the brain is not exposed to the outside environment, thus preventing infection. When researchers want to examine the cells and their interactions at this site, they insert a tiny optical instrument called a microendoscope inside the glass guide tube. The guide tubes have glass windows at the ends through which scientists can examine the interior of the brain.

"It's a bit like looking through a porthole in a submarine," said Schnitzer.

The guide tubes allow researchers to return to exactly the same location of the deep brain repeatedly over weeks or months. While techniques like MRI scans could examine the deep brain, "they couldn't look at individual cells on a microscopic scale," said Schnitzer. Now, the delicate branches of can be monitored during prolonged experiments.

To test the use of the technique for investigating brain disease, the researchers looked at a of glioma, a deadly form of brain cancer. They saw hallmarks of glioma growth in the deep brain that were previously known in tumors described as surficial (on or near the surface).

The severity of glioma tumors depends on their location. "The most aggressive brain tumors arise deep and not superficially," said Lawrence Recht, professor of neurology and neurological sciences. Why the position of glioma tumors affects their growth rate isn't understood, but this method would be a way to explore that question, Recht said.

In addition to continuing their studies of brain disease and the neuroscience of memory, the researchers hope to teach other researchers how to perform the technique.

Related Stories

Recommended for you

Researchers describe mechanism that underlies age-associated bone loss

September 22, 2017
A major health problem in older people is age-associated osteoporosis—the thinning of bone and the loss of bone density that increases the risk of fractures. Often this is accompanied by an increase in fat cells in the ...

Researchers develop treatment to reduce rate of cleft palate relapse complication

September 22, 2017
Young people with cleft palate may one day face fewer painful surgeries and spend less time undergoing uncomfortable orthodontic treatments thanks to a new therapy developed by researchers from the UCLA School of Dentistry. ...

Exosomes are the missing link to insulin resistance in diabetes

September 21, 2017
Chronic tissue inflammation resulting from obesity is an underlying cause of insulin resistance and type 2 diabetes. But the mechanism by which this occurs has remained cloaked, until now.

Thousands of new microbial communities identified in human body

September 20, 2017
A new study of the human microbiome—the trillions of microbial organisms that live on and within our bodies—has analyzed thousands of new measurements of microbial communities from the gut, skin, mouth, and vaginal microbiome, ...

Study finds immune system is critical to regeneration

September 20, 2017
The answer to regenerative medicine's most compelling question—why some organisms can regenerate major body parts such as hearts and limbs while others, such as humans, cannot—may lie with the body's innate immune system, ...

Immune cells produce wound healing factor, could lead to new IBD treatment

September 20, 2017
Specific immune cells have the ability to produce a healing factor that can promote wound repair in the intestine, a finding that could lead to new, potential therapeutic treatments for inflammatory bowel disease (IBD), according ...

3 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

BillFox
2 / 5 (4) Jan 16, 2011
Lol so now its called a breakthrough to put a straw through a skull, how ingenious!
TabulaMentis
2 / 5 (2) Jan 16, 2011
Lol so now its called a breakthrough to put a straw through a skull, how ingenious!
Though not ideal by a long shot, this research could possibly be used to record brain signals over a very long period of time as a crude form of immortality. It is better than nothing and will for sure lead to bigger and better things in the future.
mattbroderick
not rated yet Jan 17, 2011
This is pretty cool! Combine this with an electrode and we could have both long-term imaging and neuronal spike or field potential data.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.