Floating spores kill malaria mosquito larvae

February 21, 2011

There are over 200 million cases of malaria each year and, according to the World Health Organisation, in 2009 malaria was responsible for 781,000 deaths worldwide. Malaria is spread by mosquitoes which breed in open water and spend much of their larval stage feeding on fungi and microorganisms at the water surface. New research published in BioMed Central's open access journal Parasites and Vectors presents a method of dispersing pathogenic fungi as a means of preventing the spread of malaria.

The parasite (genus Plasmodium), which causes malaria, is transmitted to humans with mosquito saliva during a bite, where it invades the liver and causing fever. Once infected, it can be difficult for a human host to recover because some species of Plasmodium are able to lie dormant and evade antimalarial drugs. These parasites are also becoming resistant to the antimalarials taken to prevent infection. An alternative way of reducing the risk of is to kill the mosquitoes. The fungi, M. anisopliae and B. bassiana, cause muscardine disease in mosquito larvae, leading to their death before they can pupate and develop into the adult form.

Tullu Bukhari and colleagues from the Laboratory of Entomology, Wageningen University, The Netherlands, have used a synthetic oil (ShellSol T) as a means of dispersing over the surface of water. The oil-spore preparation is easy to mix and use of the oil improved the dispersal of spores across the water. This simple formulation increased both the persistence and effectiveness of spores, killing up to 50% more larvae than untreated spores and reducing pupation levels to less than 20% at a test site in Kenya.

Speaking about the research Tullu Bukhari said, "these fungi provide an effective means of controlling . Both spores and the oil have minimal risk to fish and and so are also environmentally safe."

More information: Development of Metarhizium anisopliae and Beauveria bassiana formulations for control of malaria mosquito larvae, Tullu Bukhari, Willem Takken, and Constantianus J.M. Koenraadt, Parasites and Vectors (in press)

Related Stories

Recommended for you

Scientists find key to regenerating blood vessels

November 23, 2017
A new study led by researchers at Sanford Burnham Prebys Medical Discovery Institute (SBP) identifies a signaling pathway that is essential for angiogenesis, the growth of new blood vessels from pre-existing vessels. The ...

Researchers find infectious prions in Creutzfeldt-Jakob disease patient skin

November 22, 2017
Creutzfeldt-Jakob disease (CJD)—the human equivalent of mad cow disease—is caused by rogue, misfolded protein aggregates termed prions, which are infectious and cause fatal damages in the patient's brain. CJD patients ...

Surprising roles for muscle in tissue regeneration, study finds

November 22, 2017
A team of researchers at Whitehead has illuminated an important role for different subtypes of muscle cells in orchestrating the process of tissue regeneration. In a paper published in the November 22 issue of Nature, they ...

Study reveals new mechanisms of cell death in neurodegenerative disorders

November 22, 2017
Researchers at King's College London have discovered new mechanisms of cell death, which may be involved in debilitating neurodegenerative disorders, such as Alzheimer's disease and Parkinson's disease.

Cinnamon turns up the heat on fat cells

November 21, 2017
New research from the University of Michigan Life Sciences Institute has determined how a common holiday spice—cinnamon—might be enlisted in the fight against obesity.

How rogue immune cells cross the blood-brain barrier to cause multiple sclerosis

November 21, 2017
Drug designers working on therapeutics against multiple sclerosis should focus on blocking two distinct ways rogue immune cells attack healthy neurons, according to a new study in the journal Cell Reports.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.