New technology pinpoints genetic differences between cancer and non-cancer patients

February 22, 2011, Virginia Tech

A group of researchers led by scientists from the Virginia Bioinformatics Institute (VBI) at Virginia Tech have developed a new technology that detects distinct genetic changes differentiating cancer patients from healthy individuals and could serve as a future cancer predisposition test.

The multidisciplinary team, which includes researchers from the University of Texas Southwestern Medical Center, has created a design for a new that allows them to measure the two million microsatellites (short, repetitive DNA sequences) found within the human genome using 300,000 probes.

Microsatellites, which tend to vary greatly among individuals and have traditionally been used in forensics and paternity tests, are also used to uncover information related to a number of other genetic diseases such as Fragile-X or Huntington's disease. This advancement aided the discovery of a unique pattern of microsatellite variation in patients that were not present in the DNA of patients who are cancer-free. Through their evaluation of global changes in the genome, the researchers determined that this pattern change alludes to a new mechanism disrupting the genome in cancer patients and may represent a new breast cancer risk biomarker. The results of the work will be featured in an upcoming edition of the journal Genes, Chromosomes and Cancer. The study is available online at http://www.ncbi.nlm.nih.gov/pubmed/21240973.

"We have now arrived at a new biomarker – an indicator that could be used to evaluate the amount of risk that you have for developing cancer in the future," explained Harold "Skip" Garner, VBI executive director who leads the institute's Medical Informatics and Systems Division. "This is part of an effort to understand their (microsatellite) role in the genome and then proceed on directly towards something that is of utility in the clinic. What just came out in our paper is a description of the technology that allows us to very quickly and efficiently and inexpensively measure these two million places using a uniquely designed microarray… It's the pattern on that microarray that provides us the information we need."

Watch a video of Garner discussing the research and its implications:

Only a small percentage of microsatellites have been linked to cancer and other diseases because there hasn't been an effective method available for evaluating large numbers of these sequences. This technology is enabling scientists to understand the role of these understudied parts of our for the first time and may help explain the difference between the known genetic components in disease and those that have been explained by genomic studies. This tool can be used to identify and better understand genetic changes in many different types of cancer with the potential to serve as a universal cancer biomarker. It has already been instrumental in the discovery of a new biomarker in the estrogen-related receptor gamma (ERR-γ) gene, which indicates an individual's increased risk for breast cancer. The group is now pursuing a number of these predisposition risk markers in colon, lung, and other cancers.

Related Stories

Recommended for you

New approach attacks 'undruggable' cancers from the outside in

January 23, 2018
Cancer researchers have made great strides in developing targeted therapies that treat the specific genetic mutations underlying a patient's cancer. However, many of the most common cancer-causing genes are so central to ...

Study: Cells of three advanced cancers die with drug-like compounds that reverse chemo failure

January 23, 2018
Researchers at Southern Methodist University have discovered three drug-like compounds that successfully reverse chemotherapy failure in three of the most commonly aggressive cancers—ovarian, prostate and breast.

Scientists block the siren call of two aggressive cancers

January 23, 2018
Aggressive cancers like glioblastoma and metastatic breast cancer have in common a siren call that beckons the bone marrow to send along whatever the tumors need to survive and thrive.

'Hijacker' drives cancer in some patients with high-risk neuroblastoma

January 23, 2018
Researchers have identified mechanisms that drive about 10 percent of high-risk neuroblastoma cases and have used a new approach to show how the cancer genome "hijacks" DNA that regulates other genes. The resulting insights ...

Enzyme inhibitor combined with chemotherapy delays glioblastoma growth

January 23, 2018
In animal experiments, a human-derived glioblastoma significantly regressed when treated with the combination of an experimental enzyme inhibitor and the standard glioblastoma chemotherapy drug, temozolomide.

Researchers identify a protein that keeps metastatic breast cancer cells dormant

January 23, 2018
A study headed by ICREA researcher Roger Gomis at the Institute for Research in Biomedicine (IRB Barcelona) has identified the genes involved in the latent asymptomatic state of breast cancer metastases. The work sheds light ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.