New clue to controlling skin regeneration -- as well as skin cancer

March 3, 2011

How do organs "know" when to stop growing? The answer could be useful in regenerative medicine, and also in cancer – where these "stop growing" signals either aren't issued or aren't heeded. Researchers in the Stem Cell Program at Children's Hospital Boston have now found a regulator of gene activity that tells epidermal stem cells when it's time to grow more skin, as well as a "crowd control" molecule that can sense cell crowding and turn the growth off.

The work, in mice and in human cancer cells, provides clues to new therapeutic strategies for cancer, particularly squamous cell carcinoma, the second most common skin cancer, in which epidermal cell growth is inappropriately turned on. It could also aid efforts to grow skin grafts and treat burn patients.

The findings, published in Cell on March 4, underscore the idea that cancer and regeneration are closely related. "We have found a molecular switch that tells your skin to keep growing or stop growing," says Fernando Camargo, PhD, the study's senior investigator and a principal investigator in Children's Stem Cell Program.

Camargo and colleagues manipulated a molecule called Yap1, already known – from studies in fruit flies – to cause massive tumor growth by triggering a pathway known as Hippo (so named because of the enormous size of the tumors). When they suppressed Yap1 function in mice, their epidermal skin stem cells failed to expand and they had thin, fragile skin.

The opposite was also true. "The more Yap1 you have in your stem cells, the thicker your skin grows," says Camargo, who is also a member of the Harvard Stem Cell Institute.

However, activation of Yap1 also caused the mice to develop squamous-cell carcinoma-like tumors, the researchers found.

They further showed that Yap1 is inactivated by a known tumor suppressor called alpha-catenin, which binds to Yap1 and keeps it outside the cell nucleus. In both mice and human squamous carcinoma cells with alpha-catenin mutations, Yap1 returns to the nucleus and becomes active again.

"Alpha catenin is silenced in many types of epithelial cancer – , colon and other squamous cell cancers," says Camargo. "When alpha catenin is absent or mutated, you get an overgrowth of cells, but until now it was unclear why. Our work suggests that over-activation of Yap 1 is likely what drives these cancers."

Alpha-catenin is known to be able to sense the density of cells in its immediate environment, and perhaps even their type. Camargo's team revealed how the information is used: When cells are packed too tightly, alpha-catenin inhibits Yap1 – the first demonstration of a direct link between an environmental cue (cell density) and a molecular regulator of organ size. Until now, little has been known about what maintains organs at a specific size.

"Through Yap1, alpha-catenin tells epidermal stem cells to either proliferate or not proliferate, depending on the needs of the tissue," Camargo explains.

Now that the "switch" for skin growth is known, manipulating it could provide ways to grow skin cells when they're needed or, conversely, to stop cancerous growth. Camargo's group is conducting screening tests to find small molecules that mimic Yap1, to induce skin regeneration at the site of a wound, or that inhibit Yap1 to treat tumors. The team is also looking for other molecules that may also interact with Yap1.

Related Stories

Recommended for you

Hibernating ground squirrels provide clues to new stroke treatments

November 17, 2017
In the fight against brain damage caused by stroke, researchers have turned to an unlikely source of inspiration: hibernating ground squirrels.

Age and gut bacteria contribute to multiple sclerosis disease progression

November 17, 2017
Researchers at Rutgers Robert Wood Johnson Medical School published a study suggesting that gut bacteria at young age can contribute to multiple sclerosis (MS) disease onset and progression.

Molecular guardian defends cells, organs against excess cholesterol

November 16, 2017
A team of researchers at the Harvard T. H. Chan School of Public Health has illuminated a critical player in cholesterol metabolism that acts as a molecular guardian in cells to help maintain cholesterol levels within a safe, ...

Prototype ear plug sensor could improve monitoring of vital signs

November 16, 2017
Scientists have developed a sensor that fits in the ear, with the aim of monitoring the heart, brain and lungs functions for health and fitness.

Ancient enzyme could boost power of liquid biopsies to detect and profile cancers

November 16, 2017
Scientists are developing a set of medical tests called liquid biopsies that can rapidly detect the presence of cancers, infectious diseases and other conditions from only a small blood sample. Researchers at The University ...

FDA to crack down on risky stem cell offerings

November 16, 2017
U.S. health authorities announced plans Thursday to crack down on doctors pushing stem cell procedures that pose the gravest risks to patients amid an effort to police a burgeoning medical field that previously has received ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.