Researchers find new mechanism behind the formation and maintenance of long-term memories

March 3, 2011

Researchers from Mount Sinai School of Medicine have found that lactate, a type of energy fuel in the brain, plays a critical role in the formation of long-term memory. These findings have important implications for common illnesses like Alzheimer's disease, other neurodegenerative disorders, aging-related memory impairment and diabetes. The research is published in the March 4th issue of the journal Cell.

The study is the first to closely evaluate the role of lactate and the effect of its transport from astrocytes—a subtype of cells—to neurons in long-term memory in mammals, said lead researcher Cristina Alberini, PhD, Professor of Neuroscience at Mount Sinai School of Medicine. "Little is known about the role of astrocytes in cognitive functions. The results further prove that astrocytes are much more actively involved in than previously thought, and that lactate is a promising target for investigating novel mechanisms that may be the cause of deficits of long-term memories." The data have potential significant implications in understanding and treating diseases like Alzheimer's, dementia, and , she said.

Researchers historically have believed that the brain cells called astrocytes only played a supportive role to neurons and had no major roles in higher brain functions. As a result, research on the development of long-term memory has largely focused on neurons. However, in recent years, data have shown that astrocytes are more involved than previously thought. Working with this evidence, Dr. Alberini and her team found that lactate released by astrocytes has a critical function in long-term memory development.

Astrocytes but not neurons contain glycogen, the storage form of glucose. Dr. Alberini's research supports a previous hypothesis that lactate produced by astrocytes provides fuel to neurons, and shows that lactate in the brain is elevated during long-term memory formation.

The researchers injected into the brains of rats an amnesic compound that blocks glycogenolysis (the breakdown of glycogen), and prevented the learning-dependent release of lactate. They did this both before and after "inhibitory avoidance learning," in which the rats learn to avoid a place where they previously had an unpleasant experience. They also injected some rats with both the amnesic compound and lactate.

The researchers found that the rats that were injected with the compound only, either before or after the unpleasant experience, had significantly impaired long-term memory. However, lactate together with the blocking compound served to "rescue" or reduce memory loss. Short-term memory and learning were not impacted by the presence of the amnestic compound or lactate.

Since it is known that glucose is an important energy source and can modulate memory retention, Dr. Alberini's team wanted to see if similar benefits were achieved by using glucose rather than lactate in the study. They injected glucose in amounts equicaloric to the lactate used in the first study into the brains of rats that also received the amnesic compound before inhibitory avoidance training. The researchers saw no rescue effect on long-term memory but after increasing the dose of glucose by three times, they saw a positive—though transient—impact.

"These results show that when a lot of energy is required, such as in long-term memory formation, glucose is not sufficient, or is less efficient, for long-term formation and maintenance," said Dr. Alberini. "Now that we know that lactate has this critical function, we can study why it does and why glucose does not have the same impact."

Dr. Alberini and her team plan to further study the role of lactate in long-term memory formation to find how it can be used as a potential target for neurodegenerative diseases. This study is supported by a grant from the National Institute of Mental Health.

Related Stories

Recommended for you

Neuroscience research provides evidence the brain is strobing, not constant

November 17, 2017
It's not just our eyes that play tricks on us, but our ears. That's the finding of a landmark Australian-Italian collaboration that provides new evidence that oscillations, or 'strobes', are a general feature of human perception.

Brain activity buffers against worsening anxiety

November 17, 2017
Boosting activity in brain areas related to thinking and problem-solving may also buffer against worsening anxiety, suggests a new study by Duke University researchers.

Investigating patterns of degeneration in Alzheimer's disease

November 17, 2017
Alzheimer's disease (AD) is known to cause memory loss and cognitive decline, but other functions of the brain can remain intact. The reasons cells in some brain regions degenerate while others are protected is largely unknown. ...

Study may point to new treatment approach for ASD

November 17, 2017
Using sophisticated genome mining and gene manipulation techniques, researchers at Vanderbilt University Medical Center (VUMC) have solved a mystery that could lead to a new treatment approach for autism spectrum disorder ...

Neuroscientists find chronic stress skews decisions toward higher-risk options

November 16, 2017
Making decisions is not always easy, especially when choosing between two options that have both positive and negative elements, such as deciding between a job with a high salary but long hours, and a lower-paying job that ...

Paraplegic rats walk and regain feeling after stem cell treatment

November 16, 2017
Engineered tissue containing human stem cells has allowed paraplegic rats to walk independently and regain sensory perception. The implanted rats also show some degree of healing in their spinal cords. The research, published ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.