More molecules for tuberculosis

March 11, 2011

Scientists are collaborating on a new international research project to identify antibiotics that can kill tuberculosis and fight resistant strains.

"We want to accelerate the discovery of new compounds that can be turned into effective drugs," said Professor Tony Maxwell from the John Innes Centre, a key player in "More Medicines for Tuberculosis", a new European research project.

Two billion people are currently infected with TB and three million die every year. TB causes more deaths than any other infectious disease. Rates are increasing, especially in sub-Saharan Africa, where people with HIV are particularly vulnerable. It is also associated with intravenous drug use and increased rates may be linked to immigration.

"The is difficult to get at," said Professor Maxwell. "It is slow growing, spends a lot of time hidden in cells before it makes itself known, and has very tough cell walls of its own."

Treatment is relatively long term, requiring a drug regime over four to six months. Non-compliance is a problem, exacerbating the challenge caused by .

"Drug discovery research for tuberculosis is dependent on academic labs and no single lab can do it", said Professor Maxwell.

Scientists from 25 labs across Europe will collaborate on the new project including some groups in the US and India.

The John Innes Centre scientists will focus on compounds that target DNA gyrase, a target that they have already established as effective and safe. They will receive compounds from European collaborators including . They will screen those that knock out DNA gyrase. Their research will continue on those compounds that are effective both against the target (DNA gyrase) and the bacterium.

Working on new compounds to hit known targets, rather than compounds that may struggle to access or that may have unknown effects in humans, will provide a quicker route to clinical trials.

"Finding new that work is only the first step," warns Professor Maxwell.

The next stage will be to determine how exactly the antibiotic compound operates and whether it has a hope of working in a clinical environment.

One group of compounds under study at JIC are naphthoquinones, originally extracted from plants including the toothbrush tree, Euclea natalensis.

Related Stories

Recommended for you

Improving prediction accuracy of Crohn's disease based on repeated fecal sampling

November 21, 2017
Researchers at the University of California San Diego Center for Microbiome Innovation (CMI) have found that sampling the gut microbiome over time can provide insights that are not available with a single time point. The ...

Anti-malaria drug shows promise as Zika virus treatment

November 17, 2017
A new collaborative study led by researchers at Sanford Burnham Prebys Medical Discovery Institute (SBP) and UC San Diego School of Medicine has found that a medication used to prevent and treat malaria may also be effective ...

Decrease in sunshine, increase in Rickets

November 17, 2017
A University of Toronto student and professor have teamed up to discover that Britain's increasing cloudiness during the summer could be an important reason for the mysterious increase in Rickets among British children over ...

Scientists identify biomarkers that indicate likelihood of survival in infected patients

November 17, 2017
Scientists have identified a set of biomarkers that indicate which patients infected with the Ebola virus are most at risk of dying from the disease.

Research team unlocks secrets of Ebola

November 16, 2017
In a comprehensive and complex molecular study of blood samples from Ebola patients in Sierra Leone, published today (Nov. 16, 2017) in Cell Host and Microbe, a scientific team led by the University of Wisconsin-Madison has ...

A structural clue to attacking malaria's 'Achilles heel'

November 16, 2017
Researchers from The Scripps Research Institute (TSRI) and PATH's Malaria Vaccine Initiative (MVI) have shed light on how the human immune system recognizes the malaria parasite though investigation of antibodies generated ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.