Motors on a mission

March 25, 2011 byLaurie Moore
Inside each neuron, microtubules carry dendritic and axonal proteins to the dendrite and the axon with the help of motors Myosin Va and Myosin VI. Illustration by Su Hyun Kwon.

( -- In a new study, Don Arnold and collaborators show that a microscopic motor drives axonal proteins to the right location in a neuron.

Within each of our bodies are billions of . These relay chemical and , forming vast networks that comprise the human .

Within each neuron is a microscopic network of its own, a complex system of signal transmissions. Proteins receive signals at the cell’s dendrite and transmit them at the axon at the other end, passing the impulses from one neuron to another and allowing human beings to think, perceive and move.

“Dendrites and axons look different and have different functions so it makes sense that these two areas would be comprised of different proteins,” said Don Arnold, associate professor of biological sciences in the College. “My lab studies how proteins made in the cell body get transported specifically to dendrites or axons.”

Proteins are synthesized within the neuron and carried in a bubble called a vesicle down highways of microtubules that point to the dendrite and the axon. Neither the two proteins themselves nor the microtubules know where the proteins should end up, so a mix of dendritic and axonal proteins will go both ways, to the dendrite and to the axon.
Arnold admitted that the system is counterintuitive, if not downright complicated. “You’d think the proteins would be put on the right microtubules to start with.”
But the proteins are not always put on the correct path. Some proteins will end up in the right place, while others must be redirected.

A 2009 study by Arnold and his collaborators published online in Nature Neuroscience solved one half of what happens if proteins end up in the wrong place. If the proteins first encounter a microtubule heading toward the axon, both types will be carried toward the axon. However, the team discovered that a motor called Myosin Va acts as a filter in the axon. Myosin Va binds to the dendritic proteins, carries them out of the axon and allows the axonal proteins to continue.

The second paper, published on March 1 in PLoS Biology and authored by graduate student Tommy Lewis Jr. of the College, Tianyi Mao of the Howard Hughes Medical Institute, and Arnold, explores how the axonal proteins end up in the axon.

“Axonal proteins have a more complicated way of targeting to the axon,” Arnold said. “There are two ways of getting to an axon. The proteins either go directly to the axon or, more bizarrely, they go to the dendrites where they’re put on the surface of the cell.”

Arnold and his team discovered that a related motor protein, Myosin VI, retrieves wayward axonal proteins from the dendrite, plucking the axonal proteins off the cellular membrane and carrying them to the axon. Myosin VI, they found, also plays a role in helping the axonal proteins find the axon in the first place.
“This whole process can be explained by the interaction with Myosin VI. It does both things,” Arnold said.

Understanding this microscopic series of events will allow for more effective targeting of axons or dendrites, enabling finer control over neurons for basic research and possibly the clinical treatment of neurological disorders.

“It’s extremely useful to be able to send something to an axon or a dendrite in an efficient manner,” Arnold said. “What I like about this is that it’s a simple system where you can do experiments that give you a definite answer. It’s a way of moving forward.”

Related Stories

Recommended for you

Study reveals breakthrough in decoding brain function

September 25, 2017
If there's a final frontier in understanding the human body, it's definitely not the pinky. It's the brain.

After 15 years in a vegetative state, nerve stimulation restores consciousness

September 25, 2017
A 35-year-old man who had been in a vegetative state for 15 years after a car accident has shown signs of consciousness after neurosurgeons implanted a vagus nerve stimulator into his chest. The findings reported in Current ...

Overturning widely held ideas: Visual attention drawn to meaning, not what stands out

September 25, 2017
Our visual attention is drawn to parts of a scene that have meaning, rather than to those that are salient or "stick out," according to new research from the Center for Mind and Brain at the University of California, Davis. ...

A brain system that builds confidence in what we see, hear and touch

September 25, 2017
A series of experiments at EPFL provide conclusive evidence that the brain uses a single mechanism (supramodality) to estimate confidence in different senses such as audition, touch, or vision. The study is published in the ...

Brain guides body much sooner than previously believed

September 25, 2017
The brain plays an active and essential role much earlier than previously thought, according to new research from Tufts University scientists which shows that long before movement or other behaviors occur, the brain of an ...

The rat race is over: New livestock model for stroke could speed discovery

September 25, 2017
It is well-known in the medical field that the pig brain shares certain physiological and anatomical similarities with the human brain. So similar are the two that researchers at the University of Georgia's Regenerative Bioscience ...


Adjust slider to filter visible comments by rank

Display comments: newest first

Mar 25, 2011
This comment has been removed by a moderator.
0.7 / 5 (48) Mar 25, 2011
Molecular machinery.
1 / 5 (2) Mar 27, 2011
Within each neuron is a microscopic network of its own, a complex system of signal transmissions. Proteins receive signals at the cells dendrite and transmit them at the axon at the other end, passing the impulses from one neuron to another and allowing human beings to think, perceive and move.

The levels of complexity here are just astounding! Good job - really good science here! All this so that I can think, perceive, and move! How something like this can evolve through blind random purposeless processes, I sure don't know! And somehow, it is not surprising to me that no one else knows either.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.