New mouse models generated for MYH9 genetic disorders

March 9, 2011, American Institute of Physics

Researchers have created the first mouse models of human MYH9 genetic disorders, which cause several problems -- including enlarged platelets and sometimes fatal kidney disease.

The MYH9 gene makes non-muscle myosin II-A protein. This protein plays a critical role in helping cells move to their correct home during . Later in life, the protein continues its involvement in cell migration, cell-cell adhesion and also in maintaining cell shape, says Yingfan Zhang, Ph.D., a postdoctoral fellow at the National Heart, Lung, and Blood Institute (NHLBI) of the National Institutes of Health.

Zhang, with the NHLBI's Laboratory of Molecular Cardiology, has focused on three of the more than forty MYH9 mutations identified in humans. One of the mutations impaired myosin's motor activity, while the other two affected the protein's ability to form filaments.

In work she will present today at the 55th Annual Biophysical Society Annual Meeting in Baltimore, MD, Zhang generated specific mutations in the MYH9 gene, then bred mice with one or two copies of the impaired gene. While mice with two copies of the gene causing motor impairment died as embryos, those with one mutated gene showed symptoms similar to humans. The filament forming impaired mice showed symptoms with both one and two mutant .

Inactivation of the MYH9 gene in humans causes a disorder called the May-Hegglin anomaly (MHA), a of the blood platelets that causes them to be abnormally large and also causes abnormalities known as Dohle bodies in leukocytes. Mutations of the MYH9 are also associated with kidney disease in humans.

"The mice had very, very large platelets, exactly like humans, and those platelets didn't work very well," says senior author Robert Adelstein,M.D. also with the NHLBI's Laboratory of Molecular Cardiology. "The mice also developed kidney disease."

The mouse models will help scientists better understand MYH9 disorders in humans, Adelstein says. "Now we can study the development of the disease in real-time, and try to figure out what has gone wrong and why the gene product has led to these defects."

More information: The presentation, "Mouse Models of Human MYH9-Related Diseases" by Yingfan Zhang et al is at 10:30 AM on Wednesday, March 9, 2011 in the Baltimore Convention Center, Hall C. Abstract: tinyurl.com/4f8a6zb

Related Stories

Recommended for you

Peers' genes may help friends stay in school, new study finds

January 18, 2018
While there's scientific evidence to suggest that your genes have something to do with how far you'll go in school, new research by a team from Stanford and elsewhere says the DNA of your classmates also plays a role.

Two new breast cancer genes emerge from Lynch syndrome gene study

January 18, 2018
Researchers at Columbia University Irving Medical Center and NewYork-Presbyterian have identified two new breast cancer genes. Having one of the genes—MSH6 and PMS2—approximately doubles a woman's risk of developing breast ...

A centuries-old math equation used to solve a modern-day genetics challenge

January 18, 2018
Researchers developed a new mathematical tool to validate and improve methods used by medical professionals to interpret results from clinical genetic tests. The work was published this month in Genetics in Medicine.

Can mice really mirror humans when it comes to cancer?

January 18, 2018
A new Michigan State University study is helping to answer a pressing question among scientists of just how close mice are to people when it comes to researching cancer.

Group recreates DNA of man who died in 1827 despite having no body to work with

January 16, 2018
An international team of researchers led by a group with deCODE Genetics, a biopharmaceutical company in Iceland, has partly recreated the DNA of a man who died in 1827, despite having no body to take tissue samples from. ...

Epigenetics study helps focus search for autism risk factors

January 16, 2018
Scientists have long tried to pin down the causes of autism spectrum disorder. Recent studies have expanded the search for genetic links from identifying genes toward epigenetics, the study of factors that control gene expression ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.