Honey can reverse antibiotic resistance

April 13, 2011

Manuka honey could be an efficient way to clear chronically infected wounds and could even help reverse bacterial resistance to antibiotics, according to research presented at the Society for General Microbiology's Spring Conference in Harrogate.

Professor Rose Cooper from the University of Wales Institute Cardiff is looking at how manuka honey interacts with three types of bacteria that commonly infest wounds: Pseudomonas aeruginosa, Group A Streptococci and Meticillin-resistant Staphylococcus aureus (MRSA). Her group has found that honey can interfere with the growth of these bacteria in a variety of ways and suggests that honey is an attractive option for the treatment of drug-resistant wound infections.

Honey has long been acknowledged for its antimicrobial properties. Traditional remedies containing honey were used in the topical treatment of wounds by diverse ancient civilisations. Manuka honey is derived from nectar collected by honey bees foraging on the manuka tree in New Zealand and is included in modern licensed wound-care products around the world. However, the antimicrobial properties of honey have not been fully exploited by modern medicine as its mechanisms of action are not yet known.

Professor Cooper's group is helping to solve this problem by investigating at a molecular level the ways in which manuka honey inhibits wound-infecting bacteria. "Our findings with streptococci and pseudomonads suggest that manuka honey can hamper the attachment of bacteria to tissues which is an essential step in the initiation of acute infections. Inhibiting attachment also blocks the formation of biofilms, which can protect bacteria from antibiotics and allow them to cause persistent infections," explained Professor Cooper. "Other work in our lab has shown that honey can make MRSA more sensitive to antibiotics such as oxacillin - effectively reversing . This indicates that existing antibiotics may be more effective against drug-resistant infections if used in combination with manuka honey."

This research may increase the clinical use of manuka honey as doctors are faced with the threat of diminishingly effective antimicrobial options. "We need innovative and effective ways of controlling wound infections that are unlikely to contribute to increased antimicrobial resistance. We have already demonstrated that manuka is not likely to select for honey-resistant bacteria," said Professor Cooper. At present, most antimicrobial interventions for patients are with systemic antibiotics. "The use of a topical agent to eradicate bacteria from wounds is potentially cheaper and may well improve antibiotic therapy in the future. This will help reduce the transmission of antibiotic-resistant from colonised wounds to susceptible patients."

Related Stories

Recommended for you

Cell-based therapy success could be boosted by new antioxidant

September 19, 2017
Cell therapies being developed to treat a range of conditions could be improved by a chemical compound that aids their survival, research suggests.

New model may help science overcome the brain's fortress-like barrier

September 19, 2017
Scientists have helped provide a way to better understand how to enable drugs to enter the brain and how cancer cells make it past the blood brain barrier.

Study suggests epilepsy drug can be used to treat form of dwarfism

September 19, 2017
A drug used to treat conditions such as epilepsy has been shown in lab tests at The University of Manchester to significantly improve bone growth impaired by a form of dwarfism.

Research predicts how patients are likely to respond to DNA drugs

September 19, 2017
Research carried out by academics at Northumbria University, Newcastle could lead to improvements in treating patients with diseases caused by mutations in genes, such as cancer, cystic fibrosis and potentially up to 6,000 ...

Urine output to disease: Study sheds light on the importance of hormone quality control

September 18, 2017
The discovery of a puddle of mouse urine seems like a strange scientific "eureka" moment.

New lung cell type discovered

September 18, 2017
A recent study has identified a new lung cell type that is implicated in the body's innate immune defense against the bacteria Streptococcus pneumoniae—one of the leading causes of pneumonia worldwide.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.