Resistance to anti-estrogen therapy in breast cancer due to natural cell response

April 4, 2011, Georgetown University Medical Center

Most breast cancers are fueled by estrogen, and anti-estrogenic agents often work for a time to control the cancers. But many of these cancers become resistant to the drugs for reasons that are not understood, leaving patients with limited treatment options.

Now researchers at the Georgetown Lombardi Comprehensive Cancer Center, a part of Georgetown University Medical Center (GUMC), say that this resistance appears to be due to a natural in cells, and that the biochemical molecules involved in this response might prove to be a new drug target. They reported their findings at the American Association for Cancer Research (AACR) 102nd Annual Meeting 2011.

They found that cells protect themselves against two anti-estrogen drugs (Tamoxifen and Faslodex) by hijacking and switching on a biological process inside the cells that is normally used when proteins are produced that don't have the right shape.

It had not been known, before this study, that this program - the "unfolded protein response" or UPR - could be triggered when breast cancer cells are "attacked" by anti-estrogen drugs, says the study's lead investigator, Ayesha Shajahan, Ph.D., an oncology researcher instructor and researcher in the laboratory of Robert Clarke, Ph.D., D.Sc., Dean for Research at GUMC. Clarke will be presenting the results at AACR.

If a UPR is activated, a cell can do one of two things, Shajahan says: it can turn on a pro-survival pathway or it can turn on a process that ultimately destroys the cell. The cells they studied all chose to "man the forts" to survive. They hunker down and wait out the attack, a tactic that allows the cell to resist anti-cancer treatment.

"We found that anti-estrogen resistant cancer cells are much more likely to turn on the pro-survival pathway than are cells that are sensitive to estrogen," says Shajahan.

They also found that anti-estrogen resistant over-express the X-Box (XBP1), which turns on UPR signaling, and that specific resistance to Faslodex (Fulvestrant) occurs because of increased levels of over-expression of a XBP1 subtype, XBP1(s).

Related Stories

Recommended for you

'Hijacker' drives cancer in some patients with high-risk neuroblastoma

January 23, 2018
Researchers have identified mechanisms that drive about 10 percent of high-risk neuroblastoma cases and have used a new approach to show how the cancer genome "hijacks" DNA that regulates other genes. The resulting insights ...

Enzyme inhibitor combined with chemotherapy delays glioblastoma growth

January 23, 2018
In animal experiments, a human-derived glioblastoma significantly regressed when treated with the combination of an experimental enzyme inhibitor and the standard glioblastoma chemotherapy drug, temozolomide.

Scientists block the siren call of two aggressive cancers

January 23, 2018
Aggressive cancers like glioblastoma and metastatic breast cancer have in common a siren call that beckons the bone marrow to send along whatever the tumors need to survive and thrive.

Researchers identify a protein that keeps metastatic breast cancer cells dormant

January 23, 2018
A study headed by ICREA researcher Roger Gomis at the Institute for Research in Biomedicine (IRB Barcelona) has identified the genes involved in the latent asymptomatic state of breast cancer metastases. The work sheds light ...

Workouts may boost life span after breast cancer

January 22, 2018
(HealthDay)—Longer survival after breast cancer may be as simple as staying fit, new research shows.

Boosting cancer therapy with cross-dressed immune cells

January 22, 2018
Researchers at EPFL have created artificial molecules that can help the immune system to recognize and attack cancer tumors. The study is published in Nature Methods.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.