Virtual surgery shows promise in personalized treatment of nasal obstruction

April 18, 2011, JAMA and Archives Journals

A preliminary report suggests that virtual nasal surgery has the potential to be a productive tool that may enable surgeons to perform personalized nasal surgery using computer simulation techniques, according to a report posted online today that will appear in the September print issue of Archives of Facial Plastic Surgery, one of the JAMA/Archives journals.

Nasal obstruction is usually caused by a deviated septum (a condition in which the partition between the two sides of the nose is off-center or crooked, making breathing difficult), or by enlarged tissues (turbinates) within the nose. Two surgical procedures commonly performed by otolaryngologists are septoplasty (an operation to correct the deformity in the septum) and turbinate surgery.

"With the availability of powerful bioengineering computer-aided design software, anatomically accurate three-dimensional (3D) computational models can now be generated from computed tomography (CT) or (MRI) data," the authors write as background information in the article. "Computational fluid dynamics (CFD) software can be used to analyze these models and calculate various anatomic and physiologic measures including nasal airflow, resistance, air conditioning, and wall shear stress."

John S. Rhee, M.D., M.P.H., of the Medical College of Wisconsin, Milwaukee, and colleagues evaluated whether virtual surgery performed on three-dimensional nasal airway models can predict post-surgical biophysical parameters obtained by . The researchers used pre- and post-surgery CT scans of a patient undergoing septoplasty and right inferior turbinate reduction (ITR) to generate 3D models of the nasal airway.

"Overall, the virtual surgery results are promising and demonstrate the potential of CFD techniques to predict post-surgical outcomes," the authors report. "The CFD calculations of overall nasal resistance for the combined virtual septoplasty with ITR model correlated well with the actual post-surgery calculations."

"As we look to the future, the hope is that this technology can be more routinely used day to day in the armamentarium [the medicines, equipment, and techniques available to a medical practitioner] of otolaryngologists and facial plastic surgeons," the authors conclude. "At this time, CFD technology is truly translational in nature and will require further research and development to reach its full potential for future applications."

More information: Arch Facial Plastic Surg. Published online April 18, 2011. doi:10.1001/archfacial.2011.18

Related Stories

Recommended for you

Best of Last Year—The top Medical Xpress articles of 2017

December 20, 2017
It was a good year for medical research as a team at the German center for Neurodegenerative Diseases, Magdeburg, found that dancing can reverse the signs of aging in the brain. Any exercise helps, the team found, but dancing ...

Pickled in 'cognac', Chopin's heart gives up its secrets

November 26, 2017
The heart of Frederic Chopin, among the world's most cherished musical virtuosos, may finally have given up the cause of his untimely death.

Sugar industry withheld evidence of sucrose's health effects nearly 50 years ago

November 21, 2017
A U.S. sugar industry trade group appears to have pulled the plug on a study that was producing animal evidence linking sucrose to disease nearly 50 years ago, researchers argue in a paper publishing on November 21 in the ...

Female researchers pay more attention to sex and gender in medicine

November 7, 2017
When women participate in a medical research paper, that research is more likely to take into account the differences between the way men and women react to diseases and treatments, according to a new study by Stanford researchers.

Drug therapy from lethal bacteria could reduce kidney transplant rejection

August 3, 2017
An experimental treatment derived from a potentially deadly microorganism may provide lifesaving help for kidney transplant patients, according to an international study led by investigators at Cedars-Sinai.

Exploring the potential of human echolocation

June 25, 2017
People who are visually impaired will often use a cane to feel out their surroundings. With training and practice, people can learn to use the pitch, loudness and timbre of echoes from the cane or other sounds to navigate ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.