Animal studies reveal new route to treating heart disease

May 2, 2011, Johns Hopkins Medical Institutions

Scientists at Johns Hopkins have shown in laboratory experiments in mice that blocking the action of a signaling protein deep inside the heart's muscle cells blunts the most serious ill effects of high blood pressure on the heart. These include heart muscle enlargement, scar tissue formation and loss of blood vessel growth.

Specifically, the Johns Hopkins team found that their intervention halted transforming growth factor beta (TGF-beta) secretion at a precise location called cell receptor type 2 in . Blocking its action in this cell type forestalled pathways for hypertrophy, fibrosis, and angiogenesis by stopping the unbridled TGF-beta signaling, which is typically observed in heart failure, in all other non-muscle types of cells in blood vessels and fibrous tissue. However, blocking TGF-beta signaling in non-muscle cells did not stop disease progression.

In several dozen different experiments, using genetically altered mice or chemicals to selectively block different TGF-beta pathways, researchers were able to pinpoint where the signaling protein had its greatest impact on heart function and determine how its unimpeded activity promoted heart disease.

"Now that we know about the pivotal and specific bad roles played by TGF-beta in a common form of heart disease, we can try to mimic our lab experiments to develop cell-specific drug therapies that stop the chain reactions in the heart muscle at the TGF-beta type 2 cell receptor location," says senior study investigator and cardiologist, David Kass, M.D. Kass is a professor at the Johns Hopkins University School of Medicine and its Heart and Vascular Institute.

The Kass team study, to be published in the June edition of the , is believed to show the first evidence of how TGF-beta is stimulated differently by various cell types in the heart and which resulting pathways promote heart failure, the most common kind of heart disease. Nearly 6 million Americans are estimated to have the condition.

Kass says previous research showed TGF-beta played a mixed role in various heart diseases, reducing arterial inflammation in some while harming valve and blood vessel function in others, such as people with Marfan syndrome. Until now, however, no explanation existed as to why any of these differences occurred, which cells controlled the TGF-beta signal, and which enzymes are stimulated as a result.

In the new study, researchers also found that in mice with hypertension-induced disease, blocking TGF-beta type 2 cell receptor stopped activities of another kind of regulating protein, called TGF-beta activated kinase (TAK-1). Its activation appears to play a key role in heart enlargement and in secreting proteins tied to scarring, as well as others tied to blood vessel formation.

Researchers began the study with injections of TGF-beta neutralizing antibodies to see if they could rein in heart-failing TGF-beta signaling. But the disease got worse in mice whose hearts had induced , and TGF-beta signaling persisted inside the muscle cells even though it was suppressed in other cells in the heart. The action of two other kinds of proteins closely tied to TGF-beta was similarly split, with the activity of Smad proteins suppressed only outside muscle cells, while TAK-1 production continued. This led Kass and his team to investigate what was happening differently inside muscle cells.

Subsequent testing in mice selectively bred to lack either one of the two TGF-beta receptors in the muscle cells revealed that blocking only the TGF-beta type 2 shut down both Smad and TAK-1 activity, stalling enlargement and scarring. Blocking only the TGF-beta type 1 receptor, however, failed to block TAK-1 activity, and disease-accelerating TGF-beta signaling persisted in non-muscle heart cells.

Researchers plan further tests in animals of chemicals that block TAK-1 as potential treatments for or other kinds of heart disease.

Explore further: Researchers gain new clues about how to prevent aortic aneurysm in patients with Marfan syndrome

Related Stories

Researchers gain new clues about how to prevent aortic aneurysm in patients with Marfan syndrome

April 14, 2011
Five years ago, patients with Marfan syndrome received new hope when laboratory studies suggested that losartan, an FDA-approved drug used to treat high blood pressure, might prevent the potentially deadly enlargement of ...

Recommended for you

Study reveals a promising alternative to corticosteroids in acute renal failure treatment

September 21, 2018
A protein produced by the human body appears to be a promising new drug candidate to treat conditions that lead to acute renal failure. This is shown by a study conducted at São Paulo State University (UNESP) in São José ...

Can a common heart condition cause sudden death?

September 20, 2018
About one person out of 500 has a heart condition known as hypertrophic cardiomyopathy (HCM). This condition causes thickening of the heart muscle and results in defects in the heart's electrical system. Under conditions ...

New drugs could reduce risk of heart disease when added to statins

September 20, 2018
New drugs that lower levels of triglycerides (a type of fat) in blood could further reduce the risk of heart attack when added to statins. These new drugs, which are in various stages of development, could also reduce blood ...

Mediterranean-style diet may lower women's stroke risk

September 20, 2018
Following a Mediterranean-style diet may reduce stroke risk in women over 40 but not in men—according to new research led by the University of East Anglia.

Inflammation critical for preventing heart attacks and strokes, study reveals

September 19, 2018
Inflammation, long considered a dangerous contributor to atherosclerosis, actually plays an important role in preventing heart attacks and strokes, new research from the University of Virginia School of Medicine reveals.

People who walk just 35 minutes a day may have less severe strokes

September 19, 2018
People who participate in light to moderate physical activity, such as walking at least four hours a week or swimming two to three hours a week, may have less severe strokes than people who are physically inactive, according ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.