New study identifies compounds that could slow down Alzheimer's disease

May 26, 2011

A family of naturally occurring plant compounds could help prevent or delay memory loss associated with Alzheimer's disease, according to a new study by the Translational Genomics Research Institute (TGen).

Beta-carboline alkaloids could potentially be used in to stop, or at least slow down, the progressively debilitating effects of Alzheimer's, according to the study published recently in the scientific journal Public Library of Science (PLoS) One.

One of these alkaloids, called harmine, inhibits a protein known as DYRK1A, which has been implicated by this and other studies in the formation tau phosphorylation. This process dismantles the connections between brain cells, or neurons, and has been linked in past studies to Alzheimer's disease.

Tau is a protein critical to the formation of the microtubule bridges in neurons. These bridges support the that, like computer circuits, allow brain cells to communicate with each other.

"Pharmacological inhibition of DYRK1A through the use of beta-carboline alkaloids may provide an opportunity to intervene therapeutically to alter the onset or progression of tau pathology in Alzheimer's disease," said Dr. Travis Dunckley, Head of TGen's Neurodegenerative Research Unit, and the study's senior author.

Beta-carboline alkaloids are found in a number of medicinal plants. They have , and have been shown to protect brain cells from excessive stimulation of neurotransmitters. "(They) are natural occurring compounds in some plant species that affect multiple targets," the study said.

Under normal circumstances, proteins regulate tau by adding phosphates. This process of tau phosphorylation enables connections between brain cells to unbind and bind again, allowing neurons to connect and reconnect with other . However, this process can go awry, allowing the formation of neurofibrillary tangles, one of the signature indicators of Alzheimer's.

In this study, laboratory tests showed that harmine, and several other beta-carboline , "potently reduced'' the expression of three forms of phosphorylated tau, and inhibited the ability of DYRK1A to phosphorylate tau protein at multiple genetic sites associated with tau pathology.

"These results suggest that this class of compounds warrant further investigation as candidate tau-based therapeutics to alter the onset or progression of tau dysfunction and pathology in Alzheimer's disease," Dr. Dunckley said.

The Arizona Alzheimer's Consortium, the National Institute on Aging, and the Louis Charitable Trust funded the study. The Consortium is funded in part by the Arizona Legislature through the Arizona Department of Health Services, which supported a portion of the study. Members of the Consortium also participated in the study. MediProPharma Inc. supported portions of the study.

Related Stories

Recommended for you

A sodium surprise: Engineers find unexpected result during cardiac research

July 20, 2017
Irregular heartbeat—or arrhythmia—can have sudden and often fatal consequences. A biomedical engineering team at Washington University in St. Louis examining molecular behavior in cardiac tissue recently made a surprising ...

Want to win at sports? Take a cue from these mighty mice

July 20, 2017
As student athletes hit training fields this summer to gain the competitive edge, a new study shows how the experiences of a tiny mouse can put them on the path to winning.

'Smart' robot technology could give stroke rehab a boost

July 19, 2017
Scientists say they have developed a "smart" robotic harness that might make it easier for people to learn to walk again after a stroke or spinal cord injury.

Engineered liver tissue expands after transplant

July 19, 2017
Many diseases, including cirrhosis and hepatitis, can lead to liver failure. More than 17,000 Americans suffering from these diseases are now waiting for liver transplants, but significantly fewer livers are available.

Lunatic Fringe gene plays key role in the renewable brain

July 19, 2017
The discovery that the brain can generate new cells - about 700 new neurons each day - has triggered investigations to uncover how this process is regulated. Researchers at Baylor College of Medicine and Jan and Dan Duncan ...

New animal models for hepatitis C could pave the way for a vaccine

July 19, 2017
They say that an ounce of prevention is worth a pound of cure. In the case of hepatitis C—a disease that affects nearly 71 million people worldwide, causing cirrhosis and liver cancer if left untreated—it might be worth ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.