Mothers curse linked to male infertility

May 16, 2011 by Deborah Braconnier report

(Medical Xpress) -- Researchers have discovered the first real evidence of the 'mother's curse' and its connection to male infertility due to genetic mutations in mitochondria. Led by Dr. Damian Dowling from Monash University in Melbourne and Paolo Innocenti from Uppsala University, their breakthrough research has been recently published in Science.

All animals have two genomes, nuclear and mitochondria, which work together. However, they are inherited in a different way. The comes from both parents while the mitochondrial one is only passed down by the mother. Because of this, mitochondria passed down to males then face an evolutionary dead-end. In this way, changes in which can impair males can be passed down. This is what is known as the ‘mother’s curse’ or selective sieve.

In their study, mitochondrial DNA from fruit flies in five different countries were collected and then inserted into a group of flies which had identical nuclear genomes. To show that the mother’s curse is real, the effect of the mitochondrial genomes should be greater in males. Changing the mitochondrial genomes in females only affected seven genes; however, in the males it affected 1,172 genes, including 300 that mainly affect the testes or sperm glands.

Dowling says that while the experiment was done on fruit flies, their genomes are very similar to that of humans, and this same mutation can be linked to infertility in males.

Explore further: Research breakthrough on male infertility

More information: Experimental Evidence Supports a Sex-Specific Selective Sieve in Mitochondrial Genome Evolution, Science 13 May 2011: Vol. 332 no. 6031 pp. 845-848 DOI:10.1126/science.1201157

ABSTRACT
Mitochondria are maternally transmitted; hence, their genome can only make a direct and adaptive response to selection through females, whereas males represent an evolutionary dead end. In theory, this creates a sex-specific selective sieve, enabling deleterious mutations to accumulate in mitochondrial genomes if they exert male-specific effects. We tested this hypothesis, expressing five mitochondrial variants alongside a standard nuclear genome in Drosophila melanogaster, and found striking sexual asymmetry in patterns of nuclear gene expression. Mitochondrial polymorphism had few effects on nuclear gene expression in females but major effects in males, modifying nearly 10% of transcripts. These were mostly male-biased in expression, with enrichment hotspots in the testes and accessory glands. Our results suggest an evolutionary mechanism that results in mitochondrial genomes harboring male-specific mutation loads.

Related Stories

Research breakthrough on male infertility

May 13, 2011
(Medical Xpress) -- Around one in 20 men is infertile, but despite the best efforts of scientists, in many cases the underlying causes of infertility have remained a mystery. New findings by a team of Australian and Swedish ...

Recommended for you

Scientists identify new way cells turn off genes

July 19, 2017
Cells have more than one trick up their sleeve for controlling certain genes that regulate fetal growth and development.

South Asian genomes could be boon for disease research, scientists say

July 18, 2017
The Indian subcontinent's massive population is nearing 1.5 billion according to recent accounts. But that population is far from monolithic; it's made up of nearly 5,000 well-defined sub-groups, making the region one of ...

Mutant yeast reveals details of the aberrant genomic machinery of children's high-grade gliomas

July 18, 2017
St. Jude Children's Research Hospital biologists have used engineered yeast cells to discover how a mutation that is frequently found in pediatric brain tumor high-grade glioma triggers a cascade of genomic malfunctions.

Late-breaking mutations may play an important role in autism

July 17, 2017
A study of nearly 6,000 families, combining three genetic sequencing technologies, finds that mutations that occur after conception play an important role in autism. A team led by investigators at Boston Children's Hospital ...

Newly identified genetic marker may help detect high-risk flu patients

July 17, 2017
Researchers have discovered an inherited genetic variation that may help identify patients at elevated risk for severe, potentially fatal influenza infections. The scientists have also linked the gene variant to a mechanism ...

Newly discovered gene variants link innate immunity and Alzheimer's disease

July 17, 2017
Three new gene variants, found in a genome wide association study of Alzheimer's disease (AD), point to the brain's immune cells in the onset of the disorder. These genes encode three proteins that are found in microglia, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.