Mothers curse linked to male infertility

May 16, 2011 by Deborah Braconnier, Medical Xpress report

(Medical Xpress) -- Researchers have discovered the first real evidence of the 'mother's curse' and its connection to male infertility due to genetic mutations in mitochondria. Led by Dr. Damian Dowling from Monash University in Melbourne and Paolo Innocenti from Uppsala University, their breakthrough research has been recently published in Science.

All animals have two genomes, nuclear and mitochondria, which work together. However, they are inherited in a different way. The comes from both parents while the mitochondrial one is only passed down by the mother. Because of this, mitochondria passed down to males then face an evolutionary dead-end. In this way, changes in which can impair males can be passed down. This is what is known as the ‘mother’s curse’ or selective sieve.

In their study, mitochondrial DNA from fruit flies in five different countries were collected and then inserted into a group of flies which had identical nuclear genomes. To show that the mother’s curse is real, the effect of the mitochondrial genomes should be greater in males. Changing the mitochondrial genomes in females only affected seven genes; however, in the males it affected 1,172 genes, including 300 that mainly affect the testes or sperm glands.

Dowling says that while the experiment was done on fruit flies, their genomes are very similar to that of humans, and this same mutation can be linked to infertility in males.

Explore further: Research breakthrough on male infertility

More information: Experimental Evidence Supports a Sex-Specific Selective Sieve in Mitochondrial Genome Evolution, Science 13 May 2011: Vol. 332 no. 6031 pp. 845-848 DOI:10.1126/science.1201157

ABSTRACT
Mitochondria are maternally transmitted; hence, their genome can only make a direct and adaptive response to selection through females, whereas males represent an evolutionary dead end. In theory, this creates a sex-specific selective sieve, enabling deleterious mutations to accumulate in mitochondrial genomes if they exert male-specific effects. We tested this hypothesis, expressing five mitochondrial variants alongside a standard nuclear genome in Drosophila melanogaster, and found striking sexual asymmetry in patterns of nuclear gene expression. Mitochondrial polymorphism had few effects on nuclear gene expression in females but major effects in males, modifying nearly 10% of transcripts. These were mostly male-biased in expression, with enrichment hotspots in the testes and accessory glands. Our results suggest an evolutionary mechanism that results in mitochondrial genomes harboring male-specific mutation loads.

Related Stories

Research breakthrough on male infertility

May 13, 2011
(Medical Xpress) -- Around one in 20 men is infertile, but despite the best efforts of scientists, in many cases the underlying causes of infertility have remained a mystery. New findings by a team of Australian and Swedish ...

Recommended for you

Peers' genes may help friends stay in school, new study finds

January 18, 2018
While there's scientific evidence to suggest that your genes have something to do with how far you'll go in school, new research by a team from Stanford and elsewhere says the DNA of your classmates also plays a role.

Two new breast cancer genes emerge from Lynch syndrome gene study

January 18, 2018
Researchers at Columbia University Irving Medical Center and NewYork-Presbyterian have identified two new breast cancer genes. Having one of the genes—MSH6 and PMS2—approximately doubles a woman's risk of developing breast ...

A centuries-old math equation used to solve a modern-day genetics challenge

January 18, 2018
Researchers developed a new mathematical tool to validate and improve methods used by medical professionals to interpret results from clinical genetic tests. The work was published this month in Genetics in Medicine.

Can mice really mirror humans when it comes to cancer?

January 18, 2018
A new Michigan State University study is helping to answer a pressing question among scientists of just how close mice are to people when it comes to researching cancer.

Group recreates DNA of man who died in 1827 despite having no body to work with

January 16, 2018
An international team of researchers led by a group with deCODE Genetics, a biopharmaceutical company in Iceland, has partly recreated the DNA of a man who died in 1827, despite having no body to take tissue samples from. ...

Epigenetics study helps focus search for autism risk factors

January 16, 2018
Scientists have long tried to pin down the causes of autism spectrum disorder. Recent studies have expanded the search for genetic links from identifying genes toward epigenetics, the study of factors that control gene expression ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.