Scientists use genetically altered virus to get tumors to tattle on themselves

May 11, 2011, Cincinnati Children's Hospital Medical Center

Scientists have used a genetically re-engineered herpes virus that selectively hunts down and infects cancerous tumors and then delivers genetic material that prompts cancers to secrete a biomarker and reveal their presence.

According to a study appearing May 11 in PLoS (Public Library of Science) ONE, the novel technology has the potential to vastly improve by allowing the disease to be caught at much earlier stages and to monitor the effectiveness of therapy.

Researchers at Cincinnati Children's Hospital Medical Center who conducted the study say the new technique – developed in preclinical mouse models – could also be more cost effective and portable than current scanning technologies. This would make it useful for diagnosing cancers in less developed parts of the world.

"Our study represents a proof-of-principle in mice, and there is certainly room for further refinement. If ultimately validated in human trials, it could have implications for people with known risk or who have a history of cancer and high risk of recurrence,'' said Timothy Cripe, M.D., Ph.D., senior investigator on the study and a physician and researcher in the Division of Oncology at Cincinnati Children's.

"Early cancer detection is vital to improve cure rates because cancer stage predicts prognosis, but biomarkers are known for only a few cancer types. We were able to use a reprogrammed herpes virus administered intravenously to deliver genetic information that induces a known blood biomarker for cancer to be secreted by cancer cells," explained Dr. Cripe, who collaborated on the study with first author, Andrew Browne, Ph.D., a fourth-year medical student at the University of Cincinnati (UC) College of Medicine and a recent graduate from UC's Department of Electrical and Computer Engineering.

The researchers engineered a simplex virus mutant they called rQ-M38G, reprogramming its genetic makeup so it bypasses healthy tissues and instead targets rapidly dividing cancer cells for infection. They also genetically armed the virus so it prompts cancer cells to secrete Gaussia luciferase (GLuc).

GLuc is a luminescent, easily detectable protein the researchers used as a universal blood biomarker for cancer cells infected by rQ-M38G. Because rQ-M38G/GLuc might also help shrink cancer, it is part of a new class of agents dubbed "theragnostics" that can simultaneously be used for diagnosis and therapy, Dr. Cripe said.

Initially the researchers tested rQ-M38G on laboratory cell cultures of healthy dormant human skin cells and on rapidly dividing . Virus replication and biomarker production were very low in the dormant normal cells. In contrast, virus replication and biomarker production were much higher in tumor cell lines of malignant peripheral nerve sheath tumors, osteosarcoma (bone cancer), rhabdomyosarcoma (muscle cancer) and Ewing sarcoma.

Researchers then tested the virus's detection capabilities in mouse models of these same cancers by injecting rQ-M38G into their tail veins, and for comparison into the tail veins of healthy control mice. Non-tumor bearing mice showed background signals for the virus without significant replications or biomarker production. More than 90 percent of the tumor bearing mice showed significant virus replication and production.

The technology even worked in some mice with only microscopic amounts of cancer in their kidneys, researchers report. If it were to work as well in humans, the scientists estimate that hidden tumors less than half-inch in diameter might be detectable. Because of the anticipated immune response against the and the GLuc protein in humans, further refinements of the technology will likely be needed to be able to use it more than once.

The study is one more example of the expanding research into using reprogrammed HSV as novel methods to treat or diagnose cancer, especially as medicine reaches the limits of modern chemotherapies. Dr. Cripe said this creates an urgent need for new strategies against stubborn metastatic disease. Less than 30 percent of patients with metastatic cancer survive beyond five years, despite the aggressive use of modern combination therapies that include chemotherapy.

Related Stories

Recommended for you

Scientists block the siren call of two aggressive cancers

January 23, 2018
Aggressive cancers like glioblastoma and metastatic breast cancer have in common a siren call that beckons the bone marrow to send along whatever the tumors need to survive and thrive.

Boosting cancer therapy with cross-dressed immune cells

January 22, 2018
Researchers at EPFL have created artificial molecules that can help the immune system to recognize and attack cancer tumors. The study is published in Nature Methods.

Workouts may boost life span after breast cancer

January 22, 2018
(HealthDay)—Longer survival after breast cancer may be as simple as staying fit, new research shows.

Cancer patients who tell their life story find more peace, less depression

January 22, 2018
Fifteen years ago, University of Wisconsin–Madison researcher Meg Wise began interviewing cancer patients nearing the end of life about how they were living with their diagnosis. She was surprised to find that many asked ...

Single blood test screens for eight cancer types

January 18, 2018
Johns Hopkins Kimmel Cancer Center researchers developed a single blood test that screens for eight common cancer types and helps identify the location of the cancer.

Researchers find a way to 'starve' cancer

January 18, 2018
Researchers at Vanderbilt University Medical Center (VUMC) have demonstrated for the first time that it is possible to starve a tumor and stop its growth with a newly discovered small compound that blocks uptake of the vital ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.