Biomaterial aids nerve regeneration

June 7, 2011
Andrew Rodda in the laboratory.

(Medical Xpress) -- A Monash University researcher has developed a new biomaterial that encourages damaged nerves in the brain and spinal cord to regrow. The work could revolutionise treatment of nerve-based injuries and diseases, such as Parkinson’s.

PhD student Andrew Rodda was part of a Monash Materials Engineering team investigating xyloglucan, a plant-based compound derived from the seeds of the tamarind tree.

Within plants, xyloglucan plays an important role in linking together and Mr Rodda has been studying its effects in animals with damaged cells.

The compound developed by Mr Rodda can be injected into an injury site as a liquid, before becoming a gel as it reaches body temperature.

Once in place, the gel acts as a support structure through which healthy cells can migrate and potentially reattach themselves to the nervous system.

Until now, all damage to the nerve cells of the central nervous system - the brain and spinal cord – had been considered irreparable.

Mr Rodda said the lack of repair, or regrowth is due mainly to the toxic environment left behind after nerve death.

“Nerve cells are sensitive, and will only grow in the most supportive of environments,” Mr Rodda said.

“After injury, new cells cannot normally penetrate into the empty space left after mass cell death. Cells clump at the edges, forming an impenetrable barrier. This leaves the centre of the wound as a lesion, which contains chemicals that kill growing nerves.”

Mr Rodda said the new works by providing a temporary scaffold on which new cells can grow and penetrate the lesion.

Significantly, it was the helper cells, known as astrocytes, which were the first to move into the implanted gel. These cells secrete beneficial chemicals, which may have helped create an environment in which the delicate nerve cells can survive.

Mr Rodda’s study is part of a worldwide effort to encourage nerve regeneration in the brain and spinal cord. It builds on previous work at Monash University to understand and control nerve growth using biomaterials.

Related Stories

Recommended for you

Post-stroke patients reach terra firma with new exosuit technology

July 26, 2017
Upright walking on two legs is a defining trait in humans, enabling them to move very efficiently throughout their environment. This can all change in the blink of an eye when a stroke occurs. In about 80% of patients post-stroke, ...

Brain cells found to control aging

July 26, 2017
Scientists at Albert Einstein College of Medicine have found that stem cells in the brain's hypothalamus govern how fast aging occurs in the body. The finding, made in mice, could lead to new strategies for warding off age-related ...

Molecular hitchhiker on human protein signals tumors to self-destruct

July 24, 2017
Powerful molecules can hitch rides on a plentiful human protein and signal tumors to self-destruct, a team of Vanderbilt University engineers found.

Researchers develop new method to generate human antibodies

July 24, 2017
An international team of scientists has developed a method to rapidly produce specific human antibodies in the laboratory. The technique, which will be described in a paper to be published July 24 in The Journal of Experimental ...

New vaccine production could improve flu shot accuracy

July 24, 2017
A new way of producing the seasonal flu vaccine could speed up the process and provide better protection against infection.

A sodium surprise: Engineers find unexpected result during cardiac research

July 20, 2017
Irregular heartbeat—or arrhythmia—can have sudden and often fatal consequences. A biomedical engineering team at Washington University in St. Louis examining molecular behavior in cardiac tissue recently made a surprising ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.