New strategy to combat cystitis

June 3, 2011

One in three women will be faced at least once in her life with cystitis, for some the start of a constantly recurring infection. Cystitis is caused by Escherichia coli bacteria which fasten on to the wall of the bladder by means of thread-like structures (pili). Han Remaut of the VIB Department for Structural Biology Brussels, Vrije Universiteit Brussel reveals for the first time the complex interactions which lead to the formation of these pili. This knowledge can be used to develop new antibiotics to treat infections of the urinary tract.

Cystitis

Around 80% of infections of the urinary tract are caused by the Escherichia coli bacteria, gram-negative rod-like bacteria. Although these bacteria form part of normal intestinal flora, virulent types can penetrate the bladder via the urethra and lead to urinary tract infections. These infections occur more often in women than in men and account for a large number of hospital-acquired infections, especially in the case of catheterized patients. Treatment consists of using existing antibiotics. However, the current generation of antibiotics is losing its power to fight these bacteria. Especially problematic are recurrent infections. There is an urgent need for new antibiotics.

Bacteria adhere to the cells of the urinary bladder

Bacteria can adhere to a surface due to their hair-like structures, known as pili or fimbriae. In the case of uropathogenic E. coli, type 1 pili occur which consist of four different sub-entities. The biosynthesis (formation) of these pili takes place through a conserved mechanism (the /usher biosynthesis route). As type 1 pili are responsible for the uropathogenic E. coli adhering to the host cells, these are promising targets for new antibacterials.

Structural biological techniques to investigate pili formation

Han Remaut, together with colleagues working for the Institute of Structural and Molecular Biology, University of London, is investigating the mechanism responsible for the biosynthesis of these pili. For this purpose, they are using X-ray diffraction - the standard technique for determining the structure of proteins. Detailed knowledge about the structure of proteins is necessary to gain an insight into how they function.

Han Remaut and colleagues were the first to successfully image the assembly complex leading to pili biosynthesis. Furthermore, this is also the first snapshot of a protein transporter in action.

New antibiotics for the treatment of infections of the urinary tract

This detailed knowledge about the biosynthesis of type 1 pili from E. coli can form the basis for the development of medicines which block the formation of the pili. If bacteria can no longer cling to the epithelial cells of the bladder, they will no longer be able to cause an . The mechanism responsible for E.coli attaching to the bladder is also used by other . As a result, this research can also contribute to the fight against other infectious diseases such as food poisoning or traveler's diarrhea.

Related Stories

Recommended for you

Engineered protein treatment found to reduce obesity in mice, rats and primates

October 19, 2017
(Medical Xpress)—A team of researchers with pharmaceutical company Amgen Inc. report that an engineered version of a protein naturally found in the body caused test mice, rats and cynomolgus monkeys to lose weight. In their ...

New procedure enables cultivation of human brain sections in the petri dish

October 19, 2017
Researchers at the University of Tübingen have become the first to keep human brain tissue alive outside the body for several weeks. The researchers, headed by Dr. Niklas Schwarz, Dr. Henner Koch and Dr. Thomas Wuttke at ...

Cancer drug found to offer promising results in treating sepsis in test mice

October 19, 2017
(Medical Xpress)—A combined team of researchers from China and the U.S. has found that a drug commonly used to treat lung cancer in humans offers a degree of protection against sepsis in test mice. In their paper published ...

Tracing cell death pathway points to drug targets for brain damage, kidney injury, asthma

October 19, 2017
University of Pittsburgh scientists are unlocking the complexities of a recently discovered cell death process that plays a key role in health and disease, and new findings link their discovery to asthma, kidney injury and ...

Study reveals key molecular link in major cell growth pathway

October 19, 2017
A team of scientists led by Whitehead Institute has uncovered a surprising molecular link that connects how cells regulate growth with how they sense and make available the nutrients required for growth. Their work, which ...

Inflammation trains the skin to heal faster

October 18, 2017
Scars may fade, but the skin remembers. New research from The Rockefeller University reveals that wounds or other harmful, inflammation-provoking experiences impart long-lasting memories to stem cells residing in the skin, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.