New breast cancer model of mutant PI3K recapitulates features of human breast cancer

July 12, 2011, Friedrich Miescher Institute for Biomedical Research
New breast cancer model of mutant PI3K recapitulates features of human breast cancer

Scientists from the Friedrich Miescher Institute for Biomedical Research have shown that a mutation in the lipid kinase PI3K, which occurs in about 30% of human breast cancers, itself evokes different forms of breast cancer. While this kinase has long been associated with cancer, and is a target for anti-tumor therapy, it is now shown to be causal for multiple types of breast cancer.

Almost every sixth in women is . Although various treatments exist for different kinds of breast cancers and although the 5-year survival rate has reached 85%, breast cancer is still the second-most common cause of after lung cancer. It is therefore vitally important to identify the molecular and cellular alterations that cause the disease.

Mohamed Bentires-Alj, his PhD student Dominique Meyer and collaborators have now published a study that addresses the role of the phosphoinositide 3-kinase () signaling pathway in the development of breast cancer. Several proteins in this signaling cascade are known to play a role in this disease. In particular, mutations in the catalytic subunit of PI3K itself, encoded by a gene called PIK3CA, occur in approximately 30% of human breast cancers. However, it was not clear if these mutations alone can initiate the disease and what their contribution was during the development of the disease state.

These FMI scientists now show that the H1047R mutant form of PIK3CA is sufficient to cause tumors in the mammary tissue of mice. "Importantly, the mutation caused a variety of breast cancer histotypes," comments Bentires-Alj. "This indicates that the mutation has its strongest effect in that give rise to several different cell types. Thus, our model recapitulates features of human with the same mutation. It will be used for testing PI3K inhibitors, some of which are already in clinical trials. This type of model will allow us to predict potential resistance mechanisms to this targeted therapy." Indeed, by identifying pathways of resistance, optimal combination therapies for cancer can be designed to improve existing and future therapies.

More information: Meyer DS, et al. (2011) Luminal expression of PIK3CA mutant H1047R in the mammary gland induces heterogeneous tumors. Cancer Res 71:4344-5

Related Stories

Recommended for you

New approach attacks 'undruggable' cancers from the outside in

January 23, 2018
Cancer researchers have made great strides in developing targeted therapies that treat the specific genetic mutations underlying a patient's cancer. However, many of the most common cancer-causing genes are so central to ...

Study: Cells of three advanced cancers die with drug-like compounds that reverse chemo failure

January 23, 2018
Researchers at Southern Methodist University have discovered three drug-like compounds that successfully reverse chemotherapy failure in three of the most commonly aggressive cancers—ovarian, prostate and breast.

'Hijacker' drives cancer in some patients with high-risk neuroblastoma

January 23, 2018
Researchers have identified mechanisms that drive about 10 percent of high-risk neuroblastoma cases and have used a new approach to show how the cancer genome "hijacks" DNA that regulates other genes. The resulting insights ...

Enzyme inhibitor combined with chemotherapy delays glioblastoma growth

January 23, 2018
In animal experiments, a human-derived glioblastoma significantly regressed when treated with the combination of an experimental enzyme inhibitor and the standard glioblastoma chemotherapy drug, temozolomide.

Researchers identify a protein that keeps metastatic breast cancer cells dormant

January 23, 2018
A study headed by ICREA researcher Roger Gomis at the Institute for Research in Biomedicine (IRB Barcelona) has identified the genes involved in the latent asymptomatic state of breast cancer metastases. The work sheds light ...

Scientists block the siren call of two aggressive cancers

January 23, 2018
Aggressive cancers like glioblastoma and metastatic breast cancer have in common a siren call that beckons the bone marrow to send along whatever the tumors need to survive and thrive.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.