New clues to the structural dynamics of BK channels

July 14, 2011

BK channels (large-conductance, Ca2+-dependent K+ channels) are essential for the regulation of important biological processes such as smooth muscle tone and neuronal excitability. New research shows that BK channel activation involves structural rearrangements formerly not understood. The study appears in the August 2011 issue of the Journal of General Physiology.

Previous research pointed to a possible unified theory of activation gating in K+ channels, with the "activation gate" formed by the bundle crossing of four S6 transmembrane helices from the four subunits. Recent studies, however, have suggested a different structure for BK channels, but the exact location of the activation gate remained a mystery.

A new study by Xixi Chen and Richard Aldrich (The University of Texas at Austin) provides important clues to this question. The research identifies a single residue M314, halfway down S6, that appears to change conformation during the opening of the BK channel, rotating its side chain from a position in the closed state not exposed to the hydrophilic pore to one that is so exposed in the open state. The results further show that M314 might not actually form the part of the activation gate that blocks ion passage, but that motions in the deep pore may be required for blocking ion passage elsewhere in the channel.

The findings point to new directions for research regarding the of BK channel activation, according to Commentary by Daniel Cox (Tufts University School of Medicine) and Toshinori Hoshi (University of Pennsylvania). Importantly, they say, the study demonstrates that activation is not an open-and-shut case as previously suspected.

More information: Cox, D.H., and T. Hoshi. 2011. J. Gen. Physiol. doi:10.1085/jgp.201110681.
Chen, X., and R.W. Aldrich. 2011. J. Gen. Physiol. doi:10.1085/jgp.201110632.

Related Stories

Recommended for you

Bio-inspired materials give boost to regenerative medicine

August 18, 2017
What if one day, we could teach our bodies to self-heal like a lizard's tail, and make severe injury or disease no more threatening than a paper cut?

Female mouse embryos actively remove male reproductive systems

August 17, 2017
A protein called COUP-TFII determines whether a mouse embryo develops a male reproductive tract, according to researchers at the National Institutes of Health and their colleagues at Baylor College of Medicine, Houston. The ...

Two-step process leads to cell immortalization and cancer

August 17, 2017
A mutation that helps make cells immortal is critical to the development of a tumor, but new research at the University of California, Berkeley suggests that becoming immortal is a more complicated process than originally ...

New Pathology Atlas maps genes in cancer to accelerate progress in personalized medicine

August 17, 2017
A new Pathology Atlas is launched today with an analysis of all human genes in all major cancers showing the consequence of their corresponding protein levels for overall patient survival. The difference in expression patterns ...

New technique overcomes genetic cause of infertility

August 17, 2017
Scientists have created healthy offspring from genetically infertile male mice, offering a potential new approach to tackling a common genetic cause of human infertility.

Are stem cells the link between bacteria and cancer?

August 17, 2017
Gastric carcinoma is one of the most common causes of cancer-related deaths, primarily because most patients present at an advanced stage of the disease. The main cause of this cancer is the bacterium Helicobacter pylori, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.