When injured muscles mistakenly grow bones

July 20, 2011

For hundreds of thousands of people, injuring a muscle through an accident like falling off a bike or having surgery can result in a strange and serious complication. Their muscles start growing bones.

No one understood what caused the abnormal growth, so there was no treatment. But now, research from Northwestern University Feinberg School of Medicine and the Perelman School of Medicine at the University of Pennsylvania shows that a neuropeptide in the brain called Substance P appears to trigger the formation of the extraskeletal bone. Eliminating Substance P prevents the bone growth.

The discovery -– in human and animal tissues -- offers a molecular target for drugs to potentially prevent and treat the abnormal bone growth, which is called heterotopic ossification.

"Patients who have it become very uncomfortable, and there is no way to make it go away," said Jack Kessler, M.D., chair of neurology at Northwestern's Feinberg School, a neurologist at Northwestern Memorial Hospital and the senior author of the paper, which was published in the Journal of Cellular Biochemistry. "This explains why it happens and gives us a way to develop a therapy to potentially treat it."

Lixin Kan, research associate professor at Feinberg and lead author of the paper, found that Substance P is dramatically increased in newly damaged tissue of patients who have the more common heterotopic ossification as well as a rarer and debilitating genetic disease. In the genetic disease, connective tissue begins to ossify and turn into bone. It's called fibrodysplasia ossificans progressiva (FOP).

In the paper, Kan reports that knocking out Substance P in animals prevented the development of the extraskeletal bone in an animal model.

"This work establishes a common mechanism underlying lesion induction for nearly all forms of heterotopic ossification including and spinal cord injury, peripheral nerve injury, athletic injury, total hip replacement and FOP," said paper co-author Frederick Kaplan, the Isaac & Rose Nassau Professor of Orthopaedic Molecular Medicine at Penn's Perelman School. "These novel findings usher in a new era in understanding of these complex disorders."

Related Stories

Recommended for you

Want to win at sports? Take a cue from these mighty mice

July 20, 2017
As student athletes hit training fields this summer to gain the competitive edge, a new study shows how the experiences of a tiny mouse can put them on the path to winning.

A sodium surprise: Engineers find unexpected result during cardiac research

July 20, 2017
Irregular heartbeat—or arrhythmia—can have sudden and often fatal consequences. A biomedical engineering team at Washington University in St. Louis examining molecular behavior in cardiac tissue recently made a surprising ...

Engineered liver tissue expands after transplant

July 19, 2017
Many diseases, including cirrhosis and hepatitis, can lead to liver failure. More than 17,000 Americans suffering from these diseases are now waiting for liver transplants, but significantly fewer livers are available.

Lunatic Fringe gene plays key role in the renewable brain

July 19, 2017
The discovery that the brain can generate new cells - about 700 new neurons each day - has triggered investigations to uncover how this process is regulated. Researchers at Baylor College of Medicine and Jan and Dan Duncan ...

'Smart' robot technology could give stroke rehab a boost

July 19, 2017
Scientists say they have developed a "smart" robotic harness that might make it easier for people to learn to walk again after a stroke or spinal cord injury.

New animal models for hepatitis C could pave the way for a vaccine

July 19, 2017
They say that an ounce of prevention is worth a pound of cure. In the case of hepatitis C—a disease that affects nearly 71 million people worldwide, causing cirrhosis and liver cancer if left untreated—it might be worth ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.