Newly developed fluorescent protein makes internal organs visible

July 18, 2011, Albert Einstein College of Medicine
Newly developed fluorescent protein makes internal organs visible
Liver cells in this mouse contain the fluorescent protein iRFP. The mouse was exposed to near-infrared light, which has caused iRFP to emit light waves that are also near-infrared. The composite image shows these fluorescent near-infrared waves passing readily through the animal’s tissues to reveal its brightly glowing liver. (credit: Albert Einstein College of Medicine)

Researchers at Albert Einstein College of Medicine of Yeshiva University have developed the first fluorescent protein that enables scientists to clearly "see" the internal organs of living animals without the need for a scalpel or imaging techniques that can have side effects or increase radiation exposure.

The new probe could prove to be a breakthrough in whole-body imaging – allowing doctors, for example, to noninvasively monitor the growth of tumors in order to assess the effectiveness of anti-cancer therapies. In contrast to other body-scanning techniques, imaging does not involve or require the use of contrast agents. The findings are described in the July 17 online edition of Nature Biotechnology.

For the past 20 years, scientists have used a variety of colored fluorescent proteins, derived from jellyfish and corals, to visualize cells and their organelles and molecules. But using fluorescent probes to peer inside live mammals has posed a major challenge. The reason: hemoglobin in an animal''s blood effectively absorbs the blue, green, red and other wavelengths used to stimulate standard fluorescent proteins along with any wavelengths emitted by the proteins when they do light up.

To overcome that roadblock, the laboratory of Vladislav Verkhusha, Ph.D., associate professor of anatomy and structural biology at Einstein and the study''s senior author, engineered a fluorescent from a bacterial phytochrome (the pigment that a species of bacteria uses to detect light). This new phytochrome-based fluorescent protein, dubbed iRFP, both absorbs and emits light in the near-infrared portion of the electromagnetic spectrum – the spectral region in which mammalian The researchers targeted their fluorescent protein to the liver – an organ particularly difficult to visualize because of its high blood content. Adenovirus particles containing the gene for iRFP were injected into mice. Once the viruses and their gene cargoes infected liver cells, the infected cells expressed the gene and produced iRFP protein. The mice were then exposed to near-infrared light and it was possible to visualize the resulting emitted fluorescent light using a whole-body imaging device. Fluorescence of the liver in the infected mice was first detected the second day after infection and reached a peak at day five. (See accompanying image.) Additional experiments showed that the iRFP fluorescent protein was nontoxic.

"Our study found that iRFP was far superior to the other fluorescent proteins that reportedly help in visualizing the livers of live animals," said Grigory Filonov, Ph.D., a postdoctoral fellow in Dr. Verkhusha''s laboratory at Einstein, and the first author of the Nature Biotechnology paper. "iRFP not only produced a far brighter image, with higher contrast than the other fluorescent proteins, but was also very stable over time. We believe it will significantly broaden the potential uses for noninvasive whole-body imaging."

Dr. Filonov noted that fluorescent-protein imaging involves no radiation risk, which can occur with standard x-rays and computed tomography (CT) scanning. And unlike magnetic resonance imaging (MRI), in which contrasting agents must sometimes be swallowed or injected to make internal body structures more visible, the contrast provided by iRFP is so vibrant that contrasting agents are not needed.

Explore further: New technology will create brain wiring diagrams

More information: "Bright and stable near-infrared fluorescent protein for in vivo imaging," July 17 online edition of Nature Biotechnology

Related Stories

New technology will create brain wiring diagrams

January 9, 2018
The human brain is composed of billions of neurons wired together in intricate webs and communicating through electrical pulses and chemical signals. Although neuroscientists have made progress in understanding the brain's ...

Appetite control depends on signaling at the 'primary cilium,' mouse study shows

January 8, 2018
UC San Francisco researchers have discovered that the brain's ability to regulate body weight depends on a novel form of signaling in the brain's "hunger circuit" via antenna-like structures on neurons called primary cilia.

Team develops world-first array of compounds for detection, imaging of Alzheimer's disease

January 5, 2018
Hong Kong Baptist University (HKBU) chemists have invented a new class of multifunctional cyanine compounds that can be used for detection, imaging and treatment of Alzheimer's disease. The research team was jointly led by ...

Study suggests ways to manipulate T cell migration in autoimmune or inflammatory disease

December 27, 2017
To eradicate pathogens or counteract inflammation, cells of the immune system move through often rapid blood flow toward peripheral disease sites, such as skin, gut or lung. Thus a goal of immunologists has been to define ...

New methods reveal the biomechanics of blood clotting

December 19, 2017
Platelets are cells in the blood whose job is to stop bleeding by sticking together to form clots and plug up a wound. Now, for the first time, scientists have measured and mapped the key molecular forces on platelets that ...

Different disease types associated with distinct amyloid-beta prion strains found in Alzheimer's patients

January 9, 2018
An international team of researchers has found different disease type associations with distinct amyloid-beta prion strains in the brains of dead Alzheimer's patients. In their paper published in Proceedings of the National ...

Recommended for you

Secrets of longevity protein revealed in new study

January 17, 2018
Named after the Greek goddess who spun the thread of life, Klotho proteins play an important role in the regulation of longevity and metabolism. In a recent Yale-led study, researchers revealed the three-dimensional structure ...

Weight flux alters molecular profile, study finds

January 17, 2018
The human body undergoes dramatic changes during even short periods of weight gain and loss, according to a study led by researchers at the Stanford University School of Medicine.

The HLF gene protects blood stem cells by maintaining them in a resting state

January 17, 2018
The HLF gene is necessary for maintaining blood stem cells in a resting state, which is crucial for ensuring normal blood production. This has been shown by a new research study from Lund University in Sweden published in ...

Magnetically applied MicroRNAs could one day help relieve constipation

January 17, 2018
Constipation is an underestimated and debilitating medical issue related to the opioid epidemic. As a growing concern, researchers look to new tools to help patients with this side effect of opioid use and aging.

Researchers devise decoy molecule to block pain where it starts

January 16, 2018
For anyone who has accidentally injured themselves, Dr. Zachary Campbell not only sympathizes, he's developing new ways to blunt pain.

Scientists unleash power of genetic data to identify disease risk

January 16, 2018
Massive banks of genetic information are being harnessed to shed new light on modifiable health risks that underlie common diseases.

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

gmurphy
not rated yet Jul 18, 2011
Very very impressive. I'm surprised there's not any negative consequences from the introduction of the fluorescent protein to the phenotype.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.