Timothy syndrome mutations provide new insights into the structure of L-calcium channel

July 14, 2011
The Timothy mutation is part of a highly conserved structure motif, which consists of small amino acids. Credit: Anna Stary-Weinzinger

The human genome encodes 243 voltage-gated ion channels. Mutations in calcium channels can cause severe inherited diseases such as migraine, night blindness, autism spectrum disorders and Timothy syndrome, which leads to severe cardiovascular disorders. Katrin Depil and Anna Stary-Weinzinger together with colleagues from the Department of Pharmacology and Toxicology, University of Vienna analyzed changes in molecular organization of calcium channels caused by Timothy syndrome mutations. Recently, they published their current research results in the Journal of Biological Chemistry.

Ion channels are large membrane proteins that conduct potassium, sodium or . They regulate electrical signals in the nervous system, control the release of neurotransmitters and are responsible for the regulation of the heart rhythm and muscle contractions. Voltage-gated calcium channels, like all other voltage-gated ion channels open and close in response to changes in membrane potential. The exact mechanisms underlying this gating process are still unexplored. It is however known that mutations can severely affect channel opening and closing, thereby disturbing the calcium homeostasis, which could lead to so called "ion channel diseases" or "channelopathies".

Life-threatening disease

Timothy syndrome, which was first described in the 90s, often leads to in early childhood. In 2004 it was discovered that mutations in calcium channel, which replace two amino acids in the ion sequence with other amino acids, cause the neurological disorders, autism, severe arrhythmias and webbing of fingers and toes that are associated with the Timothy syndrome. Prof. Hering, Head of the Department of Pharmacology and Toxicology of the University of Vienna, explains that the Timothy mutations result in enhanced calcium entry caused by defects in channel closure during an action potential. This in turn induces a calcium overflow causing arrhythmias and multiple disease patterns."

Destabilization of the closed pore

The current research focus of the two young scientists, Katrin Depil and Anna Stary-Weinzinger, are voltage gated calcium channels. In the recently published paper in the authors describe that the Timothy-mutation is part of a highly conserved structure motif, which consists of small amino acids – glycines (G) and alanines (A), which they named the "G/A/G/A"-motif. The strongest effect on channel opening occurs when residues from this motif are replaced with bigger hydrophobic amino acids. Anna Stary-Weinzinger: "We assume that the Timothy G406 and the whole G/A/G/A-motif are essential for sealing of the closed channel pore. Mutations to larger amino acids in this position prevent optimal channel closure. Our data suggest that these residues form an important part of the channel gate."

Guided by systematic mutation and correlation analyzes of specific pore segments in , Katrin Depil already succeeded in identifying key amino acid side chain properties, that play a key role in the molecular mechanism of channel opening and closure. Katrin Depil: "By analyzing further interactions in different positions in the pore region we aim to refine our calcium channel homology models. We hope to contribute to a better understanding of Timothy disease and other channelopathies."

More information: Depil K, Beyl S, Stary-Weinzinger A, Hohaus A, Timin E, Hering S. Timothy mutation disrupts link between activation and inactivation in CaV1.2. Journal of Biological Chemistry. Jun 17, 2011
DOI: 10.1074/jbc.M111.255273

Related Stories

Recommended for you

Post-stroke patients reach terra firma with new exosuit technology

July 26, 2017
Upright walking on two legs is a defining trait in humans, enabling them to move very efficiently throughout their environment. This can all change in the blink of an eye when a stroke occurs. In about 80% of patients post-stroke, ...

Brain cells found to control aging

July 26, 2017
Scientists at Albert Einstein College of Medicine have found that stem cells in the brain's hypothalamus govern how fast aging occurs in the body. The finding, made in mice, could lead to new strategies for warding off age-related ...

Molecular hitchhiker on human protein signals tumors to self-destruct

July 24, 2017
Powerful molecules can hitch rides on a plentiful human protein and signal tumors to self-destruct, a team of Vanderbilt University engineers found.

Researchers develop new method to generate human antibodies

July 24, 2017
An international team of scientists has developed a method to rapidly produce specific human antibodies in the laboratory. The technique, which will be described in a paper to be published July 24 in The Journal of Experimental ...

New vaccine production could improve flu shot accuracy

July 24, 2017
A new way of producing the seasonal flu vaccine could speed up the process and provide better protection against infection.

A sodium surprise: Engineers find unexpected result during cardiac research

July 20, 2017
Irregular heartbeat—or arrhythmia—can have sudden and often fatal consequences. A biomedical engineering team at Washington University in St. Louis examining molecular behavior in cardiac tissue recently made a surprising ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.