Aggressive drug therapy aids superbug evolution

August 3, 2011

New research raises troubling concerns about the use of aggressive drug therapies to treat a wide range of diseases such as MRSA, C. difficile, malaria, and even cancer.

"The universally accepted strategy of aggressive medication to kill all targeted disease pathogens has the problematic consequence of giving any drug-resistant that are present the greatest possible evolutionary advantage," says Troy Day, one of the paper's co-authors and Canada Research Chair in Mathematical Biology at Queen's.

The researchers note that while the first aim of a drug treatment program should be to make and keep a patient healthy, the patient's immune system also has to be allowed to work.

They suggest several strategies to address the challenge of drug-resistant pathogens including improving the current knowledge base, discovering effective ways for slowing the spread of drug-resistant pathogens from person-to-person, and developing strategies for preventing drug-resistant mutations from occurring in the first place.

Last century's malaria wonder drug, chloroquine, is a perfect example of aggressive medication leading to the growth of drug-resistant pathogens. Since drug-resistant malarial parasites didn't have to compete with parasites that were killed off by an aggressive chloroquine treatment plan, the resistant parasites were given an evolutionary advantage. As a treatment for , is now useless across most of Africa.

"As things currently stand, no research exists that can tell us what the optimal strategy would be for maintaining treatment effectiveness and mitigating the evolution of resistance," says Dr. Day. "While overwhelming medicinal force may sometimes be required, we need to be clear about when and why this strategy should be chosen since it brings with it some very clear problems with respect to resistance evolution."

Explore further: Slowing the spread of drug-resistant diseases is goal of new research area

Related Stories

Slowing the spread of drug-resistant diseases is goal of new research area

June 22, 2011
(Medical Xpress) -- In the war between drugs and drug-resistant diseases, is the current strategy for medicating patients giving many drug-resistant diseases a big competitive advantage?, asks a research paper that will be ...

Recommended for you

Google searches can be used to track dengue in underdeveloped countries

July 20, 2017
An analytical tool that combines Google search data with government-provided clinical data can quickly and accurately track dengue fever in less-developed countries, according to new research published in PLOS Computational ...

MRSA emerged years before methicillin was even discovered

July 19, 2017
Methicillin resistant Staphylococcus aureus (MRSA) emerged long before the introduction of the antibiotic methicillin into clinical practice, according to a study published in the open access journal Genome Biology. It was ...

New test distinguishes Zika from similar viral infections

July 18, 2017
A new test is the best-to-date in differentiating Zika virus infections from infections caused by similar viruses. The antibody-based assay, developed by researchers at UC Berkeley and Humabs BioMed, a private biotechnology ...

'Superbugs' study reveals complex picture of E. coli bloodstream infections

July 18, 2017
The first large-scale genetic study of Escherichia coli (E. coli) cultured from patients with bloodstream infections in England showed that drug resistant 'superbugs' are not always out-competing other strains. Research by ...

Ebola virus can persist in monkeys that survived disease, even after symptoms disappear

July 17, 2017
Ebola virus infection can be detected in rhesus monkeys that survive the disease and no longer show symptoms, according to research published by Army scientists in today's online edition of the journal Nature Microbiology. ...

Mountain gorillas have herpes virus similar to that found in humans

July 13, 2017
Scientists from the University of California, Davis, have detected a herpes virus in wild mountain gorillas that is very similar to the Epstein-Barr virus in humans, according to a study published today in the journal Scientific ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.