Mutation linked with the absence of fingerprints

August 4, 2011

Scientists have identified a mutation that might underlie an extremely rare condition, called "adermatoglyphia," which causes people to be born without any fingerprints. The research, published by Cell Press online August 4th in The American Journal of Human Genetics, not only provides valuable insight into the genetic basis of adermatoglyphia and of typical fingerprint formation but also underscores the usefulness of rare genetic mutations as a tool for investigating unknown aspects of our biology.

Human skin has ridges called dermatoglyphs that are present on the fingers, palms, toes and soles. The dermatoglyphs on the finger tips, better known as , are often used as a means for establishing identity. In fact, adermatoglyphia was recently named "immigration delay disease" because affected individuals report significant difficulties entering countries that require fingerprint recording. "We know that fingerprints are fully formed by 24 weeks after fertilization and do not undergo any modification throughout life," explains the senior study author, Dr. Eli Sprecher from Tel Aviv Sourasky Medical Center in Israel. "However, the factors underlying the formation and pattern of fingerprints during embryonic development are largely unknown."

To better understand the genetics of fingerprint formation, Dr. Sprecher and colleagues investigated a large Swiss family presenting with adermatoglyphia. All affected members of the family had displayed an absence of fingerprints since birth, and this absence was associated with a reduced number of sweat glands. Using a sophisticated genetic analysis of affected and unaffected family members, the researchers discovered that a mutation in the gene SMARCAD1 causes the disease. The protein encoded by the gene is thought to control the expression of a large number of target genes associated with development. More specifically, the group demonstrated the existence of a short version of SMARCAD1 that was exclusively expressed in the skin and was mutated in individuals with the disease.

"Taken together, our findings implicate a skin-specific version of SMARCAD1 in the regulation of fingerprint development," concludes Dr. Sprecher. "Although little is known about the function of full-length SMARCAD1 and virtually nothing regarding the physiological role of the skin-specific version of the gene, it is tempting to speculate that SMARCAD1 in the skin may target genes involved in dermatoglyph and sweat gland development, two structures jointly affected in the present family. Further, as abnormal fingerprints are known to sometimes herald severe disorders, our finding may also impact the understanding of additional diseases affecting not only the skin."

Related Stories

Recommended for you

Association found between abnormal cerebral connectivity and variability in the PPARG gene in developing preterm infants

December 12, 2017
(Medical Xpress)—A team of researchers with King's College London and the National Institute for Health Research Biomedical Research Centre, both in the U.K., has found what they describe as a strong association between ...

Large genetic study links tendency to undervalue future rewards with ADHD, obesity

December 11, 2017
Researchers at University of California San Diego School of Medicine have found a genetic signature for delay discounting—the tendency to undervalue future rewards—that overlaps with attention-deficit/hyperactivity disorder ...

Gene variants identified that may influence sexual orientation in men and boys

December 8, 2017
(Medical Xpress)—A large team of researchers from several institutions in the U.S. and one each from Australia and the U.K. has found two gene variants that appear to be more prevalent in gay men than straight men, adding ...

Disease caused by reduction of most abundant cellular protein identified

December 8, 2017
An international team of scientists and doctors has identified a new disease that results in low levels of a common protein found inside our cells.

Study finds genetic mutation causes 'vicious cycle' in most common form of amyotrophic lateral sclerosis

December 8, 2017
University of Michigan-led research brings scientists one step closer to understanding the development of neurodegenerative disorders such as ALS.

Mutations in neurons accumulate as we age: The process may explain normal cognitive decline and neurodegeneration

December 7, 2017
Scientists have wondered whether somatic (non-inherited) mutations play a role in aging and brain degeneration, but until recently there was no good technology to test this idea. A study published online today in Science, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.