Scientists explain unique activity of TB drug pyrazinamide

August 11, 2011

Pyrazinamide has been used in combination with other drugs as a first-line treatment for people with tuberculosis (TB) since the 1950s, but exactly how the drug works has not been well understood.

Now, researchers have discovered a key reason why the drug effectively shortens the required duration of TB therapy. The finding potentially paves the way for the development of new drugs that can help eliminate TB in an infected individual even more rapidly. The study was supported by the National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health, and published online on August 11 in .

Unlike most first-line , pyrazinamide does not directly kill Mycobacterium tuberculosis, the bacterium that causes TB, grown in a test tube; rather, the drug acts only on latent that exist in an acidic environment in the body. From previous studies, the investigators knew that shortly after pyrazinamide enters latent M. tuberculosis in the body, the drug converts to its active form, pyrazinoic acid (POA). But they did not know how POA then killed the bacteria, thereby shortening the normal 9- to 12-month course of therapy by several months.

In this study, the researchers learned that once formed, POA binds to a vital bacterial , ribosomal protein S1 (RpsA), blocking RpsA from decoding M. tuberculosis DNA to create other proteins that keep the bacteria alive in the body. The investigators note that their results explain the mechanism of this enigmatic TB drug, which could assist researchers attempting to develop improved TB drug treatment regimens.

More information: W Shi et al. Pyrazinamide inhibits trans-translation in Mycobacterium tuberculosis. Science Express. DOI:10.1126/science.1208813 (2011).

Related Stories

Recommended for you

A sodium surprise: Engineers find unexpected result during cardiac research

July 20, 2017
Irregular heartbeat—or arrhythmia—can have sudden and often fatal consequences. A biomedical engineering team at Washington University in St. Louis examining molecular behavior in cardiac tissue recently made a surprising ...

Want to win at sports? Take a cue from these mighty mice

July 20, 2017
As student athletes hit training fields this summer to gain the competitive edge, a new study shows how the experiences of a tiny mouse can put them on the path to winning.

'Smart' robot technology could give stroke rehab a boost

July 19, 2017
Scientists say they have developed a "smart" robotic harness that might make it easier for people to learn to walk again after a stroke or spinal cord injury.

Engineered liver tissue expands after transplant

July 19, 2017
Many diseases, including cirrhosis and hepatitis, can lead to liver failure. More than 17,000 Americans suffering from these diseases are now waiting for liver transplants, but significantly fewer livers are available.

Lunatic Fringe gene plays key role in the renewable brain

July 19, 2017
The discovery that the brain can generate new cells - about 700 new neurons each day - has triggered investigations to uncover how this process is regulated. Researchers at Baylor College of Medicine and Jan and Dan Duncan ...

New animal models for hepatitis C could pave the way for a vaccine

July 19, 2017
They say that an ounce of prevention is worth a pound of cure. In the case of hepatitis C—a disease that affects nearly 71 million people worldwide, causing cirrhosis and liver cancer if left untreated—it might be worth ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.