Scientists take a step towards developing better vaccines for bluetongue

August 1, 2011, Biotechnology and Biological Sciences Research Council

Researchers funded by the Biotechnology and Biological Sciences Research Council (BBSRC) have taken a step towards producing better vaccines against Bluetongue – an important disease of livestock - after successfully assembling the virus outside a cell. This research, published in the journal Proceedings of the National Academy of Sciences, could provide scientists with the tools to develop vaccines with useful new properties.

Professor Polly Roy of London School of Hygiene and Tropical Medicine, who led the team, explains "We've developed the tools and provided the instruction manual for developing new, more effective Bluetongue vaccines. This will not only be useful for combating Bluetongue but will provide insights into fundamental virus assembly that will be useful for producing vaccines for other viruses."

Better vaccines will be important to help combat the threat that Bluetongue poses to livestock farming in the UK and abroad. Bluetongue is a viral disease of cows and sheep that is transmitted by biting midges. Historically it has mainly affected African farms, but since 1998 the disease has been spreading across Europe. In 2007 one strain of the disease reached as far as the east coast of the UK. The disease is economically devastating and kills up to 70% of the sheep it infects.

Professor Roy continues "Bluetongue is an important virus to study because it poses such a threat to livestock farming, but it presents some considerable scientific challenges. By virus standards Bluetongue is quite architecturally complex and it has a relatively difficult genome to work with, so assembling it in a test tube was a significant challenge. No one had been able to get such a complicated virus to assemble outside a cell before."

Professor Roy and her team synthesised each of the virus's gene and protein building blocks separately and then combined them in the right order in order to produce a functional virus particle. Then, to check whether they had been successful, they infected some midge cells with the newly synthesized virus.

Professor Roy continues "When we injected the virus particles that we had assembled in the test tube into some midge cells they started behaving and replicating just as we would expect a wild virus to do. This was a really exciting moment. What had previously been a complex of proteins and other molecules whirred into activity and started making copies of itself."

Currently, Bluetongue vaccines are produced by chemical treatment of virulent viruses to inactivate them. These vaccines are effective at preventing the disease, but because it is difficult to tell the difference between animals that have been vaccinated from those that have recovered from an infection. This makes controlling outbreaks much more difficult.

This new approach provides an assembly kit for the which could allow scientists to design vaccines with useful properties. Developing a vaccine that is tagged with a marker, for example, would make it easier to tell the difference between animals that have been vaccinated and those that have suffered the disease.

Professor Douglas Kell, BBSRC Chief Executive, said "This is an exciting development and offers great potential for future development. Using the tools of , we are now able to assemble viruses piece by piece in a way that gives us far greater understanding of how they work. This approach could allow us to make safer and more effective vaccines against a range of viral diseases.

"However, whilst these technologies have great potential benefits we must ensure that scientists are mindful of the wider social and ethical implications of their work. In June 2010 BBSRC published the findings of a Synthetic Biology Dialogue which was carried out in partnership with the Engineering and Physical Sciences Research Council. The dialogue explored people's attitudes towards Synthetic Biology and their hopes and aspirations for the technology and will be used to inform science policy governing this new field."

Related Stories

Recommended for you

Researchers illustrate how muscle growth inhibitor is activated, could aid in treating ALS

January 19, 2018
Researchers at the University of Cincinnati (UC) College of Medicine are part of an international team that has identified how the inactive or latent form of GDF8, a signaling protein also known as myostatin responsible for ...

Bioengineered soft microfibers improve T-cell production

January 18, 2018
T cells play a key role in the body's immune response against pathogens. As a new class of therapeutic approaches, T cells are being harnessed to fight cancer, promising more precise, longer-lasting mitigation than traditional, ...

Weight flux alters molecular profile, study finds

January 17, 2018
The human body undergoes dramatic changes during even short periods of weight gain and loss, according to a study led by researchers at the Stanford University School of Medicine.

Secrets of longevity protein revealed in new study

January 17, 2018
Named after the Greek goddess who spun the thread of life, Klotho proteins play an important role in the regulation of longevity and metabolism. In a recent Yale-led study, researchers revealed the three-dimensional structure ...

The HLF gene protects blood stem cells by maintaining them in a resting state

January 17, 2018
The HLF gene is necessary for maintaining blood stem cells in a resting state, which is crucial for ensuring normal blood production. This has been shown by a new research study from Lund University in Sweden published in ...

Magnetically applied MicroRNAs could one day help relieve constipation

January 17, 2018
Constipation is an underestimated and debilitating medical issue related to the opioid epidemic. As a growing concern, researchers look to new tools to help patients with this side effect of opioid use and aging.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.