Vaccine linked to 'bleeding calf syndrome'

August 30, 2011, BioMed Central

Bleeding calf syndrome (bovine neonatal pancytopenia or BNP) affects new born calves resulting in low blood cell counts and depletion of the bone marrow. It first emerged in 2007 and a serious number of cases are reported each year. In affected calves, bone marrow cells which produce platelets are also destroyed. Consequently the calves' blood does not clot and they appear to bleed through undamaged skin. There is evidence that BNP is linked to the use of a particular vaccine against "Bovine viral diarrhea virus" (BVDV).

It has been suggested that antibodies in colostrum, the first milk the mother produces, are responsible for destroying the calf's blood cells. New research published in BioMed Central's journal , links BNP to anti-MHC class I antibodies. These antibodies are produced by the mother in response to contamination of vaccine against BVDV with proteins released by the production process. Veterinary Research, the top ranking veterinary journal, transferred to earlier this year and is now fully open access.

MHC I (Major Histocompatibility Complex class I) is found on the surface of all nucleated cells. These proteins present protein fragments from within the cell to . Cells bearing the body's own are ignored, but fragments of virus or other foreign proteins serve as targets for T-lymphocytes. MHC I is variable and present as several gene copies. Each individual or animal, has its own set of MHC I molecules and recognition of foreign MCH I by the immune system is a major reason for the rejection of .

Prof Till Rümenapf from Justus-Liebig-Universität Giessen commented that, "Alloantibodies (antibodies generated by one individual of a species against another of the same species) are produced by the mother if she has different MHC I than the bovine cells used to grow the vaccine. These do not harm the mother. However if her calf has the same MHC I as the vaccine production cells, the antibodies in her colostrum will destroy the calf's cells, including those of the bone marrow. Destruction of megakaryocytes results in the calf being unable to produce platelets and consequently its blood cannot coagulate."

Prof Rümenapf continued, "BVDV is responsible for compromised fertility in dairy herds and has huge implications for farming and animal welfare. We found MHC I in the vaccine, and antibodies to these molecules in vaccinated cows. The presence of MHC I in this vaccine highlights the potential risks of growing vaccine in cells derived from the same species the vaccine is intended for. Other vaccines for BVDV, with different production methods and formulations, apparently do not cause these problems."

More information: Vaccine-induced antibodies linked to bovine neonatal pancytopenia (BNP) recognize cattle Major Histocompatibility Complex class I (MHC I) Fabian Deutskens, Benjamin Lamp, Christiane M Riedel, Eveline Wentz, Günter Lochnit, Klaus Doll, Heinz-Jürgen Thiel and Till Ruemenapf Veterinary Research (in press)

Related Stories

Recommended for you

Researchers illustrate how muscle growth inhibitor is activated, could aid in treating ALS

January 19, 2018
Researchers at the University of Cincinnati (UC) College of Medicine are part of an international team that has identified how the inactive or latent form of GDF8, a signaling protein also known as myostatin responsible for ...

Bioengineered soft microfibers improve T-cell production

January 18, 2018
T cells play a key role in the body's immune response against pathogens. As a new class of therapeutic approaches, T cells are being harnessed to fight cancer, promising more precise, longer-lasting mitigation than traditional, ...

Weight flux alters molecular profile, study finds

January 17, 2018
The human body undergoes dramatic changes during even short periods of weight gain and loss, according to a study led by researchers at the Stanford University School of Medicine.

Secrets of longevity protein revealed in new study

January 17, 2018
Named after the Greek goddess who spun the thread of life, Klotho proteins play an important role in the regulation of longevity and metabolism. In a recent Yale-led study, researchers revealed the three-dimensional structure ...

The HLF gene protects blood stem cells by maintaining them in a resting state

January 17, 2018
The HLF gene is necessary for maintaining blood stem cells in a resting state, which is crucial for ensuring normal blood production. This has been shown by a new research study from Lund University in Sweden published in ...

Magnetically applied MicroRNAs could one day help relieve constipation

January 17, 2018
Constipation is an underestimated and debilitating medical issue related to the opioid epidemic. As a growing concern, researchers look to new tools to help patients with this side effect of opioid use and aging.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.