Novel approach scores first success against elusive cancer gene

September 9, 2011, Dana-Farber Cancer Institute

Dana-Farber Cancer Institute scientists have successfully disrupted the function of a cancer gene involved in the formation of most human tumors by tampering with the gene's "on" switch and growth signals, rather than targeting the gene itself. The results, achieved in multiple myeloma cells, offer a promising strategy for treating not only myeloma but also many other cancer types driven by the gene MYC, the study authors say. Their findings are being published by the journal Cell on its website Sept. 1 and in its Sept. 16 print edition.

"Cancer is a disease of disregulation of growth in a cell, and MYC is a of these genes," says James E. Bradner, MD, of Dana-Farber, one of the study's senior authors. Previous attempts to shut down MYC by inhibiting it directly with have been notably unsuccessful. "In this study, our idea was to switch MYC off, interfering with its ability to activate the cell-growth program."

They did so with a small molecule called JQ1, developed by Dana-Farber's Jun Qi, PhD, a co-author of the new study and namesake of JQ1. In , MYC is hyperactive – constantly ordering cells to grow and divide – because it is in the wrong position in the cells' chromosomes. Instead of its normal, quiet neighborhood, MYC finds itself adjacent to a gene known as the immunoglobulin gene. This busy gene is switched on by bits of DNA known as immunoglobulin enhancers, which normally prompt the cell to begin producing disease-fighting antibodies. In myeloma, the immunoglobulin enhancers act on the out-of-place MYC gene like an impatient finger at a doorbell, repeatedly activating it.

Researchers found that the enhancers are loaded with a "bromodomain" protein called BRD4, which, they demonstrate, is used to switch on MYC. Conveniently, it is targeted by JQ1. When investigators added JQ1 to laboratory samples of myeloma cells, the bromodomain proteins fell off the enhancers and the enhancers abruptly stopped working. The result: a shutdown of MYC and a slowdown of cell division.

"In a sense, the JQ1 molecule cuts the cable that activates MYC and also connects MYC to the cell-growth genes," Bradner says. "The signal is interrupted and growth abruptly stops."

When investigators administered JQ1 to laboratory mice harboring myeloma cells, the disease receded and the animals lived longer than those that had not been treated. The study authors emphasize that JQ1 is a protytpe drug and cannot be used immediately to treat myeloma or other cancers. Its success in the current study illuminates the promise of JQ1-based therapies that target bromodomain proteins in cancers dependent on MYC for their growth.

"Together, our findings show that BRD4 has an important role in maintaining MYC activity in myeloma and other blood-related malignancies," says the study's senior author, Constantine Mitsiades, MD, of Dana-Farber. "They also point to the potential usefulness of drug-like bromodomain inhibitors as novel therapies against these diseases."

Related Stories

Recommended for you

New approach attacks 'undruggable' cancers from the outside in

January 23, 2018
Cancer researchers have made great strides in developing targeted therapies that treat the specific genetic mutations underlying a patient's cancer. However, many of the most common cancer-causing genes are so central to ...

Study: Cells of three advanced cancers die with drug-like compounds that reverse chemo failure

January 23, 2018
Researchers at Southern Methodist University have discovered three drug-like compounds that successfully reverse chemotherapy failure in three of the most commonly aggressive cancers—ovarian, prostate and breast.

'Hijacker' drives cancer in some patients with high-risk neuroblastoma

January 23, 2018
Researchers have identified mechanisms that drive about 10 percent of high-risk neuroblastoma cases and have used a new approach to show how the cancer genome "hijacks" DNA that regulates other genes. The resulting insights ...

Enzyme inhibitor combined with chemotherapy delays glioblastoma growth

January 23, 2018
In animal experiments, a human-derived glioblastoma significantly regressed when treated with the combination of an experimental enzyme inhibitor and the standard glioblastoma chemotherapy drug, temozolomide.

Researchers identify a protein that keeps metastatic breast cancer cells dormant

January 23, 2018
A study headed by ICREA researcher Roger Gomis at the Institute for Research in Biomedicine (IRB Barcelona) has identified the genes involved in the latent asymptomatic state of breast cancer metastases. The work sheds light ...

Scientists block the siren call of two aggressive cancers

January 23, 2018
Aggressive cancers like glioblastoma and metastatic breast cancer have in common a siren call that beckons the bone marrow to send along whatever the tumors need to survive and thrive.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.